Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2.
نویسندگان
چکیده
MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (MKPs). MKP-3, a prototypical MKP, achieves substrate specificity through its N-terminal domain binding to the MAPK ERK2, resulting in the activation of its C-terminal phosphatase domain. The solution structure and biochemical analysis of the ERK2 binding (EB) domain of MKP-3 show that regions that are essential for ERK2 binding partly overlap with its sites that interact with the C-terminal catalytic domain, and that these interactions are functionally coupled to the active site residues of MKP-3. Our findings suggest a novel mechanism by which the EB domain binding to ERK2 is transduced to cause a conformational change of the C-terminal catalytic domain, resulting in the enzymatic activation of MKP-3.
منابع مشابه
Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP.
Inactivation of mitogen-activated protein kinases (MAPKs) by MAPK phosphatases (MKPs) is accomplished via substrate-induced activation of the latter enzymes; however, the structural basis for the underlying mechanism remains elusive. Here, we report the three-dimensional solution structure of the C-terminal phosphatase domain of the prototypical MKP PAC-1, determined when bound to phosphate. St...
متن کاملCatalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase.
MAP kinase phosphatase-3 (MKP-3) dephosphorylates phosphotyrosine and phosphothreonine and inactivates selectively ERK family mitogen-activated protein (MAP) kinases. MKP-3 was activated by direct binding to purified ERK2. Activation was independent of protein kinase activity and required binding of ERK2 to the noncatalytic amino-terminus of MKP-3. Neither the gain-of-function Sevenmaker ERK2 m...
متن کاملDocking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
Mitogen-activated protein kinase (MAPK) cascades control gene expression patterns in response to extracellular stimuli. MAPK/ERK (extracellular-signal-regulated kinase) kinases (MEKs) activate MAPKs by phosphorylating them; activated MAPKs, in turn, phosphorylate target transcription factors, and are deactivated by phosphatases. One mechanism for maintaining signal specificity and efficiency is...
متن کاملERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells.
Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is the MAPK phosphatase family member that negatively regulates MAPK signaling. Our previous study showed that MKP-1 is involved in cisplatin resistance, but the mechanism underlying its resistance is not understood. Here, we show that ERK2-mediated MKP-1 expression is critical for cisplatin resistance. Specifically, we showed that i...
متن کاملBoth nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytopla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2001