Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode.

نویسندگان

  • Xiuping Zhu
  • Jinren Ni
  • Junjun Wei
  • Xuan Xing
  • Hongna Li
  • Yi Jiang
چکیده

Scale-up of boron-doped diamond (BDD) anode system is significant to the practical application of electrochemical oxidation in bio-refractory wastewater treatment. In this study, the performance of a smaller BDD anode (24 cm(2)) system in continuous mode electrochemical oxidation of phenol simulated wastewater was first investigated and well described by the response surface methodology (RSM). Furthermore, the RSM was extended to examine the scale-up feasibility of BDD anode systems with similar configurations. It was demonstrated that both COD degradation efficiency and specific energy consumption could be expected at the same level even as the system was enlarged over 100 times, which implied that BDD anode system could be successfully scaled up through controlling the same retention time, current density, initial COD, and conductivity conditions. Based on this study, a larger BDD anode (2904 cm(2)) system was constructed and systematic measurements were made on its performance in electrochemical oxidation of phenol simulated wastewater. Very good agreement was found between measured and predicted results by RSM. At the optimized conditions, the larger BDD anode system could easily reduce the COD of phenol simulated wastewater from 633 mg L(-1) to 145 mg L(-1) (<150 mg L(-1), National Discharge Standard of China) during 80 min with specific energy consumption only 31 kWh kgCOD(-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.

Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for...

متن کامل

Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular w...

متن کامل

PHENOL REMOVAL FROM WASTEWATERS BY ELECTROCHEMICAL OXIDATION USING BORON DOPED DIAMOND (BDD) AND Ti/Ti0.7Ru0.3O2 DSA ELECTRODES

Industrial wastewater containing non-biodegradable organic pollutants consists of highly toxic effluents whose treatment is necessary due to environmental and economical restrictions. In order to treat these effluents, an electrochemical process using a dimensionally stable anode (DSA) and boron-doped diamond (BDD) electrode was studied. The performance of these electrodes for COD removal from ...

متن کامل

Application of Boron-doped Diamond Electrodes for Wastewater Treatment

Boron-doped diamond (BDD) thin film is a new electrode material that has received great attention recently because it possesses several technologically important characteristics such as an inert surface with low adsorption properties, remarkable corrosion stability, even in strong acidic media, and an extremely wide potential window in aqueous and non-aqueous electrolytes. Due to these properti...

متن کامل

Removal of High Concentrations of Phenol in Dual Chamber Microbial Fuel Cell

Background and purpose: Microbial fuel cell is one of the sustainable development technologies that can be used simultaneously for removal of many pollutants and generate electricity. The aim of this study was to determine the removal rate of high concentrations of phenol in a microbial fuel cell. Materials and methods: A dual chamber microbial fuel cell having Nafion proton exchange membrane ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 184 1-3  شماره 

صفحات  -

تاریخ انتشار 2010