Rad is temporally regulated within myogenic progenitor cells during skeletal muscle regeneration.
نویسندگان
چکیده
The successful use of myogenic progenitor cells for therapeutic applications requires an understanding of the intrinsic and extrinsic cues involved in their regulation. Herein we demonstrate the expression pattern and transcriptional regulation of Rad, a prototypical member of a family of novel Ras-related GTPases, during mammalian development and skeletal muscle regeneration. Rad was identified using microarray analysis, which revealed robust upregulation of its expression during skeletal muscle regeneration. Our current findings demonstrate negligible Rad expression with resting adult skeletal muscle; however, after muscle injury, Rad is expressed within the myogenic progenitor cell population. Rad expression is significantly increased and localized to the myogenic progenitor cell population during the early phases of regeneration and within the newly regenerated myofibers during the later phases of regeneration. Immunohistochemical analysis demonstrated that Rad and MyoD are coexpressed within the myogenic progenitor cell population of regenerating skeletal muscle. This expression profile of Rad during skeletal muscle regeneration is consistent with the proposed roles for Rad in the inhibition of L-type Ca(2+) channel activity and the inhibition of Rho/RhoA kinase activity. We also have demonstrated that known myogenic transcription factors (MEF2, MyoD, and Myf-5) can increase the transcriptional activity of the Rad promoter and that this ability is significantly enhanced by the presence of the Ca(2+)-dependent phosphatase calcineurin. Furthermore, this enhanced transcriptional activity appears to be dependent on the presence of a conserved NFAT binding motif within the Rad promoter. Taken together, these data define Rad as a novel factor within the myogenic progenitor cells of skeletal muscle and identify key regulators of its transcriptional activity.
منابع مشابه
Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells.
The regulation of myogenic progenitor cells during muscle regeneration is not clearly understood. We have previously shown that the Foxk1 gene, a member of the forkhead/winged helix family of transcription factors, is expressed in myogenic progenitor cells in adult skeletal muscle. In the present study, we utilize transgenic technology and demonstrate that the 4.6 kb upstream fragment of the Fo...
متن کاملCytoglobin modulates myogenic progenitor cell viability and muscle regeneration.
Mammalian skeletal muscle can remodel, repair, and regenerate itself by mobilizing satellite cells, a resident population of myogenic progenitor cells. Muscle injury and subsequent activation of myogenic progenitor cells is associated with oxidative stress. Cytoglobin is a hemoprotein expressed in response to oxidative stress in a variety of tissues, including striated muscle. In this study, we...
متن کاملSmad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration
Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expressio...
متن کاملDev110155 2780..2790
A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21 and p57), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, spe...
متن کاملTranscriptional profiling and regulation of the extracellular matrix during muscle regeneration.
Muscle regeneration is a complex process requiring the coordinated interaction between the myogenic progenitor cells or satellite cells, growth factors, cytokines, inflammatory components, vascular components and the extracellular matrix (ECM). Previous studies have elegantly described the physiological modulation of the regenerative process in response to muscle injury, but the molecular respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 290 2 شماره
صفحات -
تاریخ انتشار 2006