Nitrogen oxides emission control options for coal-fired electric utility boilers.
نویسندگان
چکیده
Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/10(6) Btu.
منابع مشابه
Preliminary Estimates of Performance and Cost of Mercury Emission Control Technology Applications on Electric Utility Boilers: An Update
The Environmental Protection Agency has recently proposed a reduction in mercury emissions from coal-fired power plants. There are two broad approaches under development to controlling mercury emissions from coal-fired electric utility boilers: (1) powdered activated carbon (PAC) injection, and (2) multipollutant control, in which Hg capture is enhanced in existing and new sulfur dioxide (SO2),...
متن کاملEmissions of sulfur trioxide from coal-fired power plants.
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S conte...
متن کاملSelective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide Emissions from Coal-Fired Boilers
The Clean Coal Technology Demonstration Program (CCTDP) is a government and industry co-funded effort to demonstrate a new generation of innovative coal utilization processes in a series of facilities built across the country. These projects are carried out on a commercial scale to prove technical feasibility and provide information for future applications. The goal of the CCTDP is to furnish t...
متن کاملControl of Nitrogen Oxide Emissions: Selective Catalytic Reduction (SCR)
The Clean Coal Technology (CCT) Demonstration Program is a government and industry co-funded effort to demonstrate a new generation of innovative coal utilization processes in a series of " showcase " facilities built across the country. These projects are on a scale sufficiently large to demonstrate commercial worthiness and to generate data for design, construction, operation, and technical/e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Air & Waste Management Association
دوره 55 9 شماره
صفحات -
تاریخ انتشار 2005