Aggregate formation and the impairment of long-term synaptic facilitation by ectopic expression of mutant huntingtin in Aplysia neurons.

نویسندگان

  • Jin-A Lee
  • Chae-Seok Lim
  • Seung-Hee Lee
  • Hyoung Kim
  • Nobuyuki Nukina
  • Bong-Kiun Kaang
چکیده

Huntington's disease (HD) is caused by an expansion of a polyglutamine (polyQ) tract within huntingtin (htt) protein. To examine the cytotoxic effects of polyQ-expanded htt, we overexpressed an enhanced green fluorescent protein (EGFP)-tagged N-terminal fragment of htt with 150 glutamine residues (Nhtt150Q-EGFP) in Aplysia neurons. A combined confocal and electron microscopic study showed that Aplysia neurons expressing Nhtt150Q-EGFP displayed numerous abnormal aggregates (diameter 0.5-5 microm) of filamentous structures, which were formed rapidly (approximately 2 h) but which were sustained for at least 18 days in the cytoplasm. Furthermore, the overexpression of Nhtt150Q-EGFP in sensory cells impaired 5-hydroxytryptamine (5-HT)-induced long-term synaptic facilitation in sensori-motor synapses without affecting basal synaptic strength or short-term facilitation. This study demonstrates the stability of polyQ-based aggregates and their specific effects on long-term synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Huntingtin Is Critical Both Pre- and Postsynaptically for Long-Term Learning-Related Synaptic Plasticity in Aplysia

Patients with Huntington's disease exhibit memory and cognitive deficits many years before manifesting motor disturbances. Similarly, several studies have shown that deficits in long-term synaptic plasticity, a cellular basis of memory formation and storage, occur well before motor disturbances in the hippocampus of the transgenic mouse models of Huntington's disease. The autosomal dominant inh...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

Long-term sensitization training in Aplysia leads to an increase in the expression of BiP, the major protein chaperon of the ER

Long-term memory for sensitization of the gill- and siphon-withdrawal reflexes in Aplysia californica requires RNA and protein synthesis. These long-term behavioral changes are accompanied by long-term facilitation of the synaptic connections between the gill and siphon sensory and motor neurons, which are similarly dependent on transcription and translation. In addition to showing an increase ...

متن کامل

MAP Kinase Translocates into the Nucleus of the Presynaptic Cell and Is Required for Long-Term Facilitation in Aplysia

Long-term facilitation of the sensory to motor synapse in Aplysia requires gene expression. While some transcription factors involved in long-term facilitation are phosphorylated by PKA, others lack PKA sites but contain MAP Kinase (MAPK) phosphorylation sites. We now show that MAPK translocates into the nucleus of the presynaptic but not the postsynaptic cell during 5-HT-induced long-term faci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2003