On Majorization, Favard and Berwald Inequalities

نویسندگان

  • NAVEED LATIF
  • JOSIP PEČARIĆ
  • IVAN PERIĆ
چکیده

In this paper, we obtain extensions of majorization type results and extensions of weighted Favard’s and Berwald’s inequality. We prove positive semi-definiteness of matrices generated by differences deduced from majorization type results and differences deduced from weighted Favard’s and Berwald’s inequality. This implies a surprising property of exponentially convexity and log-convexity of these differences which allows us to deduce Lyapunov’s and Dresher’s inequalities for these differences, which are improvements of majorization type results and weighted Favard’s and Berwald’s inequalities. Analogous Cauchy’s type means, as equivalent forms of exponentially convexity and log-convexity, are also studied and the monotonicity properties are proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More inequalities for Laplacian indices by way of majorization

The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...

متن کامل

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

Berwald type inequality for Sugeno integral

Nonadditive measure is a generalization of additive probability measure. Sugeno integral is a useful tool in several theoretical and applied statistics which has been built on non-additive measure. Integral inequalities play important roles in classical probability and measure theory. The classical Berwald integral inequality is one of the famous inequalities. This inequality turns out to have ...

متن کامل

A Variance Analog of Majorization and Some Associated Inequalities

We introduce a partial order, variance majorization, on R, which is analogous to the majorization order. A new class of monotonicity inequalities, based on variance majorization and analogous to Schur convexity, is developed.

متن کامل

BERWALD TYPE INEQUALITY FOR EXTREMAL UNIVERSAL INTEGRALS BASED ON (α,m)–CONCAVE FUNCTION

The aim of this work is to show a Berwald type inequality for the extremal universal integrals based on (α ,m) concave function. Some examples are given to illustrate the validity of these inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011