Audio bandwidth extension using ensemble of recurrent neural networks
نویسندگان
چکیده
In audio communication systems, the perceptual audio quality of the reproduced audio signals such as the naturalness of the sound is limited by the available audio bandwidth. In this paper, a wideband to super-wideband audio bandwidth extension method is proposed using an ensemble of recurrent neural networks. The feature space of wideband audio is firstly divided into different regions through clustering. For each region in the feature space, a specific recurrent neural network with a sparsely connected hidden layer, referred as the echo state network, is employed to dynamically model the mapping relationship between wideband audio features and high-frequency spectral envelope. In the following step, the outputs of multiple echo state networks are weighted and fused by means of network ensemble, in order to further estimate the high-frequency spectral envelope. Finally, combining the high-frequency fine spectrum extended by spectral translation, the proposed method can effectively extend the bandwidth of wideband audio to super wideband. Objective evaluation results show that the proposed method outperforms the hidden Markov model-based bandwidth extension method on the average in terms of both static and dynamic distortions. In subjective listening tests, the results indicate that the proposed method is able to improve the auditory quality of the wideband audio signals and outperforms the reference method.
منابع مشابه
Waveform Modeling Using Stacked Dilated Convolutional Neural Networks for Speech Bandwidth Extension
This paper presents a waveform modeling and generation method for speech bandwidth extension (BWE) using stacked dilated convolutional neural networks (CNNs) with causal or non-causal convolutional layers. Such dilated CNNs describe the predictive distribution for each wideband or high-frequency speech sample conditioned on the input narrowband speech samples. Distinguished from conventional fr...
متن کاملMonitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملSpeech Bandwidth Extension Using Bottleneck Features and Deep Recurrent Neural Networks
This paper presents a novel method for speech bandwidth extension (BWE) using deep structured neural networks. In order to utilize linguistic information during the prediction of high-frequency spectral components, the bottleneck (BN) features derived from a deep neural network (DNN)-based state classifier for narrowband speech are employed as auxiliary input. Furthermore, recurrent neural netw...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016