A Numerical Method for Extended Boussinesq Shallow-Water Wave Equations
نویسنده
چکیده
The accurate numerical simulation of wave disturbance within harbours requires consideration of both nonlinear and dispersive wave processes in order to capture such physical effects as wave refraction and diffraction, and nonlinear wave interactions such as the generation of harmonic waves. The Boussinesq equations are the simplest class of mathematical model that contain all these effects in a variable depth, shallow water environment. There are a variety of Boussinesq-type mathematical models and it is necessary to compare and contrast them both for their limitations with respect to the physical parameters of the problem and also for their ease of application as part of a suitable numerical model. It is decided here to consider a set of extended Boussinesq equations which provide an accurate model of the wave processes over a greater range of depths than the classical Boussinesq mathematical model. A method-of-lines numerical algorithm is proposed for these problems, combining a finite element spatial discretisation with existing, adaptive order, adaptive step size time integration software. Two simpler one-dimensional, nonlinear, dispersive wave models; the Korteweg-de Vries equation and Regularised Long Wave equation, are used in the initial development of the numerical methods. It is shown that within the shallow water framework a linear finite element method is sufficiently accurate for these problems. This numerical method is then applied to the one-dimensional extended Boussinesq equations. It is shown how the previously developed method can be directly used and that it is of similar accuracy to a previously published finite difference method. Initial conditions and boundary conditions are described in detail taking into account physical, mathematical and computational considerations. A new formulation of internal wave generation is developed which allows reflected waves to pass through the wave generation region. The performance of the numerical model is demonstrated by comparison against theoretical results, a previously published finite difference model and experimental results. The two-dimensional extended Boussinesq equation system is rewritten in a form suitable for the application of a linear triangular finite element spatial discretisation. The formulation of appropriate initial and boundary conditions in combination with the application of the time integration software to this equation system is considered in detail. The performance of the numerical method is tested by comparison with experimental data and the suitability of the model for harbour design is investigated by simulation of a realistic harbour geometry and wave conditions.
منابع مشابه
Boussinesq modeling of surface waves due to underwater landslides
Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion which govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bat...
متن کاملBoussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves
Considered here are Boussinesq systems of equations of surface water wave theory over a variable bottom. A simplified such Boussinesq system is derived and solved numerically by the standard Galerkin-finite element method. We study by numerical means the generation of tsunami waves due to bottom deformation and we compare the results with analytical solutions of the linearized Euler equations. ...
متن کاملExtended Serre Equations for Applications in Intermediate Water Depths
The Serre or Green and Naghdi equations are fully-nonlinear and weakly dispersive and have a built-in assumption of irrotationality. However, like the standard Boussinesq equations, also Serre’s equations are only valid for long waves in shallow waters. To allow applications in a greater range of h0/l, where h0 and l represent, respectively, depth and wavelength characteristics, a new set of ex...
متن کاملHigher-order Boussinesq equations for two-way propagation of shallow water waves
Standard perturbation methods are applied to Euler’s equations of motion governing the capillary-gravity shallow water waves to derive a general higher-order Boussinesq equation involving the small-amplitude parameter, α = a/h0, and long-wavelength parameter, β = (h0/l), where a and l are the actual amplitude and wavelength of the surface wave, and h0 is the height of the undisturbed water surf...
متن کاملDiscontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems
Two-dimensional shallow water systems are frequently used in engineering practice to model environmental flows. The benefit of these systems are that, by integration over the water depth, a two-dimensional system is obtained which approximates the full three-dimensional problem. Nevertheless, for most applications the need to propagate waves over many wavelengths means that the numerical soluti...
متن کامل