Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter.
نویسندگان
چکیده
A new cold-inducible genetic construct was cloned using a chloroplast-specific omega-3-fatty acid desaturase gene (FAD7) under the control of a cold-inducible promoter (cor15a) from Arabidopsis thaliana. RT-PCR confirmed a marked increase in FAD7 expression, in young Nicotiana tabacum (cv. Havana) plants harboring cor15a-FAD7, after a short-term exposure to cold. When young, cold-induced tobacco seedlings were exposed to low-temperature (0.5, 2 or 3.5 degrees C) for up to 44 days, survival within independent cor15a-FAD7 transgenic lines (40.2-96%) was far superior to the wild type (6.7-10.2%). In addition, the major trienoic fatty acid species remained stable in cold-induced cor15a-FAD7 N. tabacum plants under prolonged cold storage while the levels of hexadecatrienoic acid (16:3) and octadecatrienoic acid (18:3) declined in wild type plants under the same conditions (79 and 20.7% respectively). Electron microscopy showed that chloroplast membrane ultrastructure in cor15a-FAD7 transgenic plants was unaffected by prolonged exposure to cold temperatures. In contrast, wild type plants experienced a loss of granal stacking and disorganization of the thylakoid membrane under the same conditions. Changes in membrane integrity coincided with a precipitous decline in leaf chlorophyll concentration and low survival rates in wild type plants. Cold-induced double transgenic N. alata (cv. Domino Mix) plants, harboring both the cor15a-FAD7 cold-tolerance gene and a cor15a-IPT dark-tolerance gene, exhibited dramatically higher survival rates (89-90%) than wild type plants (2%) under prolonged cold storage under dark conditions (2 degrees C for 50 days).
منابع مشابه
Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco.
The increased production of trienoic fatty acids, hexadecatrienoic (16:3) and linolenic (18:3) acids, is a response connected with cold acclimation of higher plants and is thought to protect plant cells against cold damage. Transgenic tobacco (Nicotiana tabacum cv SR1) plants that contain increased levels of 16:3 and 18:3 fatty acids, and correspondingly decreased levels of their precursors, he...
متن کاملGenetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast W-3 Fatty Acid Desaturase in Transgenic Tobacco'
l h e increased produdion of trienoic fatty acids, hexadecatrienoic (163) and linolenic (183) acids, is a response conneded with cold acclimation of higher plants and is thought to proted plant cells against cold damage. lransgenic tobacco (Nicotiana tabacum cv SR1) plants that contain increased levels of 16:3 and 18:3 fatty acids, and correspondingly decreased levels of their precursors, hexad...
متن کاملTransformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants.
The desC gene for the acyl-lipid Delta9-desaturase from the thermophilic cyanobacterium Synechococcus vulcanus was introduced into Nicotiana tabacum under control of the 35S promoter. Expression of the desaturase was confirmed by Western blotting. Lipid analysis revealed that lipid content and the extent of fatty acid unsaturation significantly increased in leaves of transgenic plants. Chilling...
متن کاملResponses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملAssessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene
Transformation of plants using Agrabacterium rhizogenes may affect secondary metabolite production as well as morphological changes. In this study, T-DNA from Ri plasmid in A. rhizogenes carrying pRi15834-PRT35S-GUS was introduced into tobacco leaf segments to initiate development of transformed hairy roots. Plant regeneration from transgenic roots used MS medium, and plants regenerated fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Planta
دوره 223 5 شماره
صفحات -
تاریخ انتشار 2006