The influence of impact angle on the dynamic response of a Hybrid III headform and brain tissue deformation
نویسندگان
چکیده
The objective of this study was to investigate the influence of impact angle on the dynamic response of a Hybrid III headform and brain tissue deformation by impacting the front and side of the headform using four angle conditions (0°, at the impact site and 5, 10 and 15° rightward rotations of the headform from 0°) as well as three additional angle conditions of -5, 10 and -15° (leftward rotations from 0°) at the side location to examine the effects of the neckform. The acceleration-time curves were used as input into a finite element model of the brain where maximum principal strain was calculated. The study found that an impact angle of 15° significantly influencesthe results when measured using linear and rotational acceleration and maximum principal strain. When developing sophisticated impact protocols and undertaking head injury reconstruction research, it is important to be aware of impact angle.
منابع مشابه
The Relationship between Impact Condition and Velocity on Brain Tissue Response
Share: (@ucd_oa) Some rights reserved. For more information, please see the item record link above. SUMMARY Injury reconstruction is a well accepted method for investigating the relationship between the event causing brain injury and the resulting trauma to neural tissue. Understanding the effect of the impact characteristics and velocity on the brain deformations is important when interpreting...
متن کاملNumerical Investigation of dip angle direction of foundation Joint on nonlinear dynamic response of concrete gravity dams
The stability of a gravity dam on a jointed rock foundation might be endangered by weak joints that may be present in the fracture network of the bed rock. A review of the literature shows that there are few studies of the effect of a weak joint in the foundation rock on the stability of dams. This research uses the finite difference numerical modelling software ABAQUS to model a gravity dam, t...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کامل