Dilation Matrices for Nonseparable Bidimensional Wavelets

نویسنده

  • Ana M. C. Ruedin
چکیده

For nonseparable bidimensional wavelet transforms, the choice of the dilation matrix is all–important, since it governs the downsampling and upsampling steps, determines the cosets that give the positions of the filters, and defines the elementary set that gives a tesselation of the plane. We introduce nonseparable bidimensional wavelets, and give formulae for the analysis and synthesis of images. We analyze several dilation matrices, and show how the wavelet transform operates visually. We also show some distorsions produced by some of these matrices. We show that the requirement of their eigenvalues being greater than 1 in absolute value is not enough to guarantee their suitability for image processing applications, and discuss other conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of a class of trivariate nonseparable compactly supported wavelets with special dilation matrix

We present a method for  the construction of compactlysupported $left (begin{array}{lll}1 & 0 & -1\1 & 1 & 0 \1 &  0 & 1\end{array}right )$-wavelets  under a mild condition. Wavelets inherit thesymmetry of the corresponding scaling function and satisfies thevanishing moment condition originating in the symbols of the scalingfunction. As an application, an  example is  provided.

متن کامل

Parameterization for Bivariate Nonseparable Wavelets

In this paper, we give a complete and simple parameterization for bivariate non-separable compactly supported orthonormal wavelets based on the commonly used uniform dilation matrix       = 0 1 2 0 D Key-Words: Wavelets, Nonseparable, Bivariate, Parameterization

متن کامل

Families of Orthogonal Two-dimensional Wavelets

We construct orthonormal wavelet bases of L2(IR) with compact support for dilation matrices of determinant 2. The key idea is to describe the set H2 of all two-dimensional (2D) scaling coefficients satisfying the orthogonality condition as an implicit function. This set includes the scaling coefficients for induced 1D wavelets. We compute the tangent space of H2 at HN , the scaling coefficients...

متن کامل

On the Construction of a Class of Bidimensional Nonseparable Compactly Supported Wavelets

Chui and Wang discussed the construction of one-dimensional compactly supported wavelets under a general framework, and constructed one-dimensional compactly supported spline wavelets. In this paper, under a mild condition, the construction of M = ( 1 1 1 −1 )-wavelets is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006