Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain
نویسندگان
چکیده
This paper presents a visual navigation algorithm for the six-legged walking robot DLR Crawler in rough terrain. The algorithm is based on stereo images from which depth images are computed using the SemiGlobal Matching (SGM) method. Further, a visual odometry is calculated along with an error measure. Pose estimates are obtained by fusing inertial data with relative leg odometry and visual odometry measurements using an indirect information filter. The visual odometry error measure is used in the filtering process to put lower weights on erroneous visual odometry data, hence, improving the robustness of pose estimation. From the estimated poses and the depth images, a dense digital terrain map is created by applying the locus method. The traversability of the terrain is estimated by a plane fitting approach and paths are planned using a D* Lite planner taking the traversability of the terrain and the current motion capabilities of the robot into account. Motion commands and the traversability measures of the upcoming terrain are sent to the walking layer of the robot so that it can choose an appropriate gait for the terrain. Experimental results show the accuracy of the navigation algorithm and its robustness against visual disturbances.
منابع مشابه
Towards an Autonomous Walking Robot for Planetary Surfaces
In this paper, recent progress in the development of the DLR Crawler a six-legged, actively compliant walking robot prototype is presented. The robot implements a walking layer with a simple tripod and a more complex biologically inspired gait. Using a variety of proprioceptive sensors, different reflexes for reactively crossing obstacles within the walking height are realised. On top of the wa...
متن کاملOn-Board Perception and Motion Planning for Legged Locomotion over Rough Terrain
This paper addresses the issues of perception and motion planning in a legged robot walking over a rough terrain. The solution takes limited perceptual capabilities of the robot into account. A passive stereo camera and a 2D laser scanner are considered for sensing the terrain, with environment representations matching the uncertainty characteristics of these sensors. The motion planner adheres...
متن کاملPosture and Vibration Control Based on Virtual Suspension Model for Multi-Legged Walking Robot
Until now, studies on suspension control by using frequency response analysis that have been reported are almost for motorcar, but not for multi-legged walking robot. However, because of the disturbances, such as the various frequency properties of terrain, the collision and the slip between foot of robot and ground, the dynamic changes of the supported weight by each leg and the centre of grav...
متن کاملAutonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor
The present paper describes the integration of laser-based perception, footstep planning, and walking control of a humanoid robot for navigation over previously unknown rough terrain. A perception system that obtains the shape of the surrounding environment to an accuracy of a few centimeters is realized based on input obtained using a scanning laser range sensor. A footstep planner decides the...
متن کاملKinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot
As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2012