Differential Effects of Surface-Functionalized Zirconium Oxide Nanoparticles on Alveolar Macrophages, Rat Lung, and a Mouse Allergy Model

نویسندگان

  • Antje Vennemann
  • Francesca Alessandrini
  • Martin Wiemann
چکیده

Nanoparticles (NPs) may affect the lung via their chemical composition on the surface. Here, we compared the bioactivity of zirconium oxide (ZrO₂) NPs coated with either aminopropilsilane (APTS), tetraoxidecanoic acid (TODS), polyethyleneglycol (PGA), or acrylic acid (Acryl). Supernatants from NPs-treated cultured alveolar macrophages (NR8383) tested for lactate dehydrogenase, glucuronidase, tumor necrosis factor α, and H₂O₂ formation revealed dose-dependent effects, with only gradual differences among particles whose gravitational settling and cellular uptake were similar. We selected TODS- and Acryl-coated NPs for intratracheal administration into the rat lung. Darkfield and hyperspectral microscopy combined with immunocytochemistry showed that both NPs qualities accumulate mainly within the alveolar macrophage compartment, although minute amounts also occurred in neutrophilic granulocytes. Dose-dependent signs of inflammation were found in the broncho-alveolar lavage fluid on day 3 but no longer on day 21 post-application of ≥1.2 mg per lung; again only minor differences occurred between TODS- and Acryl-coated NPs. In contrast, the response of allergic mice was overall higher compared to control mice and dependent on the surface modification. Increases in eosinophils, lymphocytes and macrophages were highest following ZrO₂-PGA administration, followed by ZrO₂-Acryl, ZrO₂-TODS, and ZrO₂-APTS. We conclude that surface functionalization of ZrO₂ NPs has minor effects on the inflammatory lung response of rats and mice, but is most relevant for an allergic mouse model. Allergic individuals may therefore be more susceptible to exposure to NPs with specific surface modifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ROLE OF ALVEOLAR MACROPHAGES IN THE PRODUCTION OF COLONY –STIMULATING FACTOR BY THE LUNG

The role of alveolar macrophages in the production of granulocyte/ macrophage colony-stimulating factor(s) by the rat lung was investigated. Lavaged lungs, when incubated at proper weight per volume of culture medium, produced the same amount of colony-stimulating factor as unlavaged ones. Both lavaged and unlavaged lungs produced similar types of colony-stimulating factor (s). Prolonged i...

متن کامل

Computational Multiscale Toxicodynamic Modeling of Silver and Carbon Nanoparticle Effects on Mouse Lung Function

A computational, multiscale toxicodynamic model has been developed to quantify and predict pulmonary effects due to uptake of engineered nanomaterials (ENMs) in mice. The model consists of a collection of coupled toxicodynamic modules, that were independently developed and tested using information obtained from the literature. The modules were developed to describe the dynamics of tissue with e...

متن کامل

Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.

The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in ox...

متن کامل

Pro-Inflammatory versus Immunomodulatory Effects of Silver Nanoparticles in the Lung: The Critical Role of Dose, Size and Surface Modification

The growing use of silver nanoparticles (Ag-NPs) in consumer products raises concerns about their toxicological potential. The purpose of the study was to investigate the size- and coating-dependent pulmonary toxicity of Ag-NPs in vitro and in vivo, using an ovalbumin (OVA)-mouse allergy model. Supernatants from (5.6-45 µg/mL) Ag50-PVP, Ag200-PVP or Ag50-citrate-treated NR8383 alveolar macropha...

متن کامل

NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis.

Lung exposure to metal oxide nanoparticles (NPs) comprising soluble metal haptens may produce T-helper cell type 1 (Th1)- and Th17-associated delayed-type hypersensitivity (DTH) responses and pulmonary alveolar proteinosis (PAP). In order to study this, haptenic metal oxide NPs (NiO, Co(3)O(4), Cr(2)O(3) and CuO) were instilled into the lungs of female Wistar rats, and the immunoinflammatory re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017