Statistical Analysis of the Processes Controlling Choline and Ethanolamine Glycerophospholipid Molecular Species Composition
نویسندگان
چکیده
The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are critical for biological homeostasis during development, health and disease. These complex mechanisms control the architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2 positions. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serve as the predominant biophysical scaffolds in membranes, acting as reservoirs for potent lipid signals and regulating numerous enzymatic processes. Here we report the first rigorous computational dissection of the mechanisms influencing PC and PE molecular architectures from high-throughput shotgun lipidomic data. Using novel statistical approaches, we have analyzed multidimensional mass spectrometry-based shotgun lipidomic data from developmental mouse heart and mature mouse heart, lung, brain, and liver tissues. We show that in PC and PE, sn1 and sn2 positions are largely independent, though for low abundance species regulatory processes may interact with both the sn1 and sn2 chain simultaneously, leading to cooperative effects. Chains with similar biochemical properties appear to be remodeled similarly. We also see that sn2 positions are more regulated than sn1, and that PC exhibits stronger cooperative effects than PE. A key aspect of our work is a novel statistically rigorous approach to determine cooperativity based on a modified Fisher's exact test using Markov Chain Monte Carlo sampling. This computational approach provides a novel tool for developing mechanistic insight into lipidomic regulation.
منابع مشابه
Myocardial lipidomics. Developments in myocardial nuclear lipidomics.
The development of electrospray ionization mass spectrometry has been critical for the analyses of lipidomes from subcellular organelles. The myocardial nuclear lipidome likely has a key role in the molecular regulation of gene expression. In fact, recent studies have suggested that specific phospholipid classes bind and regulate specific transcription factors. The dynamic regulation of the myo...
متن کاملPlasmenylethanolamine is the major storage depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly hydrolyzed after angiotensin II stimulation.
The present study demonstrates that rabbit aortic intimal smooth muscle cells contain the majority of their endogenous arachidonic acid mass in plasmenylethanolamine molecular species. To demonstrate the potential significance of these plasmenylethanolamines as substrates for the smooth muscle cell phospholipases that are activated during agonist stimulation, aortic rings were prelabeled with [...
متن کاملAbnormal phospholipid molecular species of erythrocytes in sickle cell anemia.
As the lipid composition of cell membranes has significant effects upon cellular function, we hypothesized that the membranes of sickle cells might have a distorted lipid composition. Accordingly, we analyzed the molecular species of the choline and ethanolamine glycerophospholipids, the fatty acid composition of the total phospholipids and of the five major individual phospholipids of erythroc...
متن کاملSterol carrier protein-2 expression alters phospholipid content and fatty acyl composition in L-cell fibroblasts.
The effects sterol carrier protein-2 (SCP-2) expression on L-cell phospholipid levels and fatty acyl composition was assessed using L-cells transfected with the murine cDNA encoding for either the 15 kDa proSCP-2 or 13.2 kDa SCP-2. Expression of these proteins reduced total phospholipid mass (nmol/mg protein) by 24% and reduced the cholesterol to phospholipid ratio 60 and 28%, respectively. In ...
متن کاملBrain lipid metabolism in the cPLA2 knockout mouse.
We examined brain phospholipid metabolism in mice in which the cytosolic phospholipase A(2) (cPLA(2,) Type IV, 85 kDa) was knocked out (cPLA(2)(-/-) mice). Compared with controls, these mice demonstrated altered brain concentrations of several phospholipids, reduced esterified linoleate, arachidonate, and docosahexaenoate in choline glycerophospholipid, and reduced esterified arachidonate in ph...
متن کامل