Effect of kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20.
نویسندگان
چکیده
Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition.
منابع مشابه
Kallikrein-related peptidase 4, matrix metalloproteinase 20, and the maturation of murine and porcine enamel.
The crowns of matrix metalloproteinase 20 (Mmp20) null mice fracture at the dentino-enamel junction (DEJ), whereas the crowns of kallikrein-related peptidase 4 (Klk4) null mice fracture in the deep enamel just above the DEJ. We used backscatter scanning electron microscopy to assess enamel mineralization in incisors from 9-wk-old wild-type, Klk4 null, and Mmp20 null mice, and in developing pig ...
متن کاملHow do enamelysin and kallikrein 4 process the 32-kDa enamelin?
The activities of two proteases--enamelysin (MMP-20) and kallikrein 4 (KLK4)--are necessary for dental enamel to achieve its high degree of mineralization. We hypothesize that the selected enamel protein cleavage products which accumulate in the secretory-stage enamel matrix do so because they are resistant to further cleavage by MMP-20. Later, they are degraded by KLK4. The 32-kDa enamelin is ...
متن کاملRelationships between protein and mineral during enamel development in normal and genetically altered mice.
The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles an...
متن کاملDecreased mineral content in MMP-20 null mouse enamel is prominent during the maturation stage.
During enamel development, matrix metalloproteinase-20 (MMP-20, enamelysin) is expressed early during the secretory stage as the enamel thickens, and kallikrein-4 (KLK-4, EMSP1) is expressed later during the maturation stage as the enamel hardens. Thus, we investigated whether the physical properties of the secretory-/maturation-stage MMP-20 null enamel were significantly different from those o...
متن کاملTGF-β1 autocrine signalling and enamel matrix components
Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 20 شماره
صفحات -
تاریخ انتشار 2011