Microrheology of wormlike micellar fluids from the diffusion of colloidal probes.
نویسندگان
چکیده
The microrheology of cationic micellar solutions has been investigated as a function of added organic salts using quasielastic light scattering (QELS). Two organic salts, sodium p-toluene sulfonate and sodium salicylate, were used to induce microstructural changes in cetyl trimethylammonium bromide (CTAB) micelles. The mean-squared displacement (MSD) of polystyrene probe particles embedded in CTAB micellar solutions was monitored by QELS in the single-scattering regime. Through the use of the generalized Stokes-Einstein relationship, the frequency-dependent complex shear moduli of each fluid were estimated from the Laplace transform of the corresponding MSD. The salt-induced transition from nearly spherical to elongated wormlike micelles and consequent changes in fluid response from viscous to viscoelastic are clearly captured by microrheology.
منابع مشابه
Microrheology from rotational diffusion of colloidal particles.
The microrheology of viscoelastic fluids is obtained from rotational diffusion of optically anisotropic spherical colloidal probes, measured by depolarized dynamic light scattering. The storage and loss moduli obtained from the rotational mean squared displacement is in excellent agreement with those obtained from translational diffusion and by mechanical measurements. We also show that this me...
متن کاملProbing linear and nonlinear microrheology of viscoelastic fluids
Bulk rheological properties of viscoelastic fluids have been extensively studied in macroscopic shearing geometries. However, little is known when an active microscopic probe is used to locally perturb them far from the linear-response regime. Using a colloidal particle dragged periodically by scanning optical tweezers through a viscoelastic fluid, we investigate both, its linear and nonlinear ...
متن کاملBroad bandwidth optical and mechanical rheometry of wormlike micelle solutions.
We characterize the linear viscoelastic shear properties of an aqueous wormlike micellar solution using diffusing wave spectroscopy (DWS) based tracer microrheology as well as various mechanical techniques such as rotational rheometry, oscillatory squeeze flow, and torsional resonance oscillation covering the frequency range from 10(-1) to 10(6) rad/s. Since DWS as well as mechanical oscillator...
متن کاملAccounting for inertia effects to access the high-frequency microrheology of viscoelastic fluids.
We study the Brownian motion of microbeads immersed in water and in a viscoelastic wormlike micelles solution by optical trapping interferometry and diffusing wave spectroscopy. Through the mean-square displacement obtained from both techniques, we deduce the mechanical properties of the fluids at high frequencies by explicitly accounting for inertia effects of the particle and the surrounding ...
متن کاملMicrorheology of colloidal dispersions: Shape matters
e consider a “probe” particle translating at constant velocity through an otherwise quiescent ispersion of colloidal “bath” particles, as a model for particle-tracking microrheology experiments n the active nonlinear regime. The probe is a body of revolution with major and minor semiaxes and b, respectively, and the bath particles are spheres of radii b. The probe’s shape is such that hen its m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 18 شماره
صفحات -
تاریخ انتشار 2005