Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma
نویسندگان
چکیده
Polymorphisms in the CAV1/2 genes that encode signature proteins of caveolae are associated with glaucoma, the second leading cause of blindness worldwide, and with its major risk factor, intraocular pressure (IOP). We hypothesized that caveolin-1 (Cav-1) participates in IOP maintenance via modulation of aqueous humor drainage from the eye. We localize caveolae proteins to human and murine conventional drainage tissues and show that caveolae respond to mechanical stimulation. We show that Cav-1-deficient (Cav-1-/-) mice display ocular hypertension explained by reduced pressure-dependent drainage of aqueous humor. Cav-1 deficiency results in loss of caveolae in the Schlemm's canal (SC) and trabecular meshwork. However, their absence did not appear to impact development nor adult form of the conventional outflow tissues according to rigorous quantitative ultrastructural analyses, but did affect cell and tissue behavior. Thus, when IOP is experimentally elevated, cells of the Cav-1-/- outflow tissues are more susceptible to plasma membrane rupture indicating that caveolae play a role in mechanoprotection. Additionally, aqueous drainage from Cav-1-/- eyes was more sensitive to nitric oxide (NO) synthase inhibition than controls, suggesting that excess NO partially compensates for outflow pathway dysfunction. These results provide a functional link between a glaucoma risk gene and glaucoma-relevant pathophysiology.
منابع مشابه
The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle
Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around ...
متن کاملWhat is the Real Cause of Glaucoma?
Introduction: The term glaucoma refers to a group of diseases that have a characteristic optic neuropathy with associated visual field loss in common. Intraocular pressure has been considered to be the only causal factor for glaucoma and the only factor that can be manipulated to alter the course of the disease. But considering high intraocular pressure as the only factor responsible for glauco...
متن کاملEndothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells.
The endothelial isoform of nitric oxide synthase (eNOS) modulates cardiac myocyte function and is expressed in the particulate subcellular fraction. We have previously shown that eNOS is targeted to plasmalemmal caveolae in endothelial cells. Caveolae, specialized domains of the plasma membrane, may serve to sequester signaling proteins; a family of transmembrane proteins, the caveolins, form a...
متن کاملThe Role of Caveolin 1 in HIV Infection and Pathogenesis
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis....
متن کاملThe phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation.
Caveolin-1 and -2 are the two major coat proteins found in plasma membrane caveolae of most of cell types. Here, by using adenoviral transduction of either caveolin-1 or caveolin-2 or both isoforms into cells lacking both caveolins, we demonstrate that caveolin-2 positively regulates caveolin-1-dependent caveolae formation. More importantly, we show that caveolin-2 is phosphorylated in vivo at ...
متن کامل