Asymptotic Behavior of Traveling Wave Fronts of Lotka-Volterra Competitive System

نویسنده

  • Zhiyong Li
چکیده

This paper is concerned with the asymptotic behavior of the trav-eling wave fronts in Lotka-Volterra competition system. By Laplacian transform, we prove that the traveling wave fronts of the system grow exponentially when the traveling coordinate tends to negative infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanency and Asymptotic Behavior of The Generalized Lotka-Volterra Food Chain System

In the present paper a generalized Lotka-Volterra food chain system has been studied and also its dynamic behavior such as locally asymptotic stability has been analyzed in case of existing interspecies competition. Furthermore, it has been shown that the said system is permanent (in the sense of boundedness and uniformly persistent). Finally, it is proved that the nontrivial equilibrium point...

متن کامل

Traveling Wave Solutions for Delayed Reaction–Diffusion Systems and Applications to Diffusive Lotka–Volterra Competition Models with Distributed Delays

This paper is concerned with the traveling wave solutions of delayed reaction– diffusion systems. By using Schauder’s fixed point theorem, the existence of traveling wave solutions is reduced to the existence of generalized upper and lower solutions. Using the technique of contracting rectangles, the asymptotic behavior of traveling wave solutions for delayed diffusive systems is obtained. To i...

متن کامل

On the Existence of Axisymmetric Traveling Fronts in Lotka-volterra Competition-diffusion Systems in R

This paper is concerned with the following two-species LotkaVolterra competition-diffusion system in the three-dimensional spatial space { ∂ ∂t u1(x, t) = ∆u1(x, t) + u1(x, t) [1− u1(x, t)− k1u2(x, t)] , ∂ ∂t u2(x, t) = d∆u2(x, t) + ru2(x, t) [1− u2(x, t)− k2u1(x, t)] , where x ∈ R3 and t > 0. For the bistable case, namely k1, k2 > 1, it is well known that the system admits a one-dimensional mo...

متن کامل

Traveling Plane Wave Solutions of Delayed Lattice Differential Systems in Competitive Lotka-volterra Type

In this work we consider the existence of traveling plane wave solutions of systems of delayed lattice differential equations in competitive Lotka-Volterra type. Employing iterative method coupled with the explicit construction of upper and lower solutions in the theory of weak quasi-monotone dynamical systems, we obtain a speed, c∗, and show the existence of traveling plane wave solutions conn...

متن کامل

Traveling Wave Solutions in Delayed Reaction Diffusion Systems with Applications to Multi-species Models

This paper is concerned with the existence of traveling wave solutions in delayed reaction diffusion systems which at least contain multi-species competition, cooperation and predator-prey models with diffusion and delays. By introducing the mixed quasimonotone condition and the exponentially mixed quasimonotone condition, we reduce the existence of traveling wave solutions to the existence of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008