Bias Reduction for Endpoint Estimation

نویسندگان

  • Deyuan Li
  • Liang Peng
  • Xinping Xu
چکیده

Recently Li and Peng (2009a) proposed a bias reduction method for estimating the endpoint of a distribution function via an external estimator for the so-called second order parameter. Unlike the same study for the tail index of a heavy tailed distribution, the above procedure requires a certain rate of convergence of the external estimator rather than consistence. This makes the choice of such an external estimator impractical. In this paper, we propose a new bias reduction method which estimates all parameters by using the same number of upper order statistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel

One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of  kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...

متن کامل

Estimation in multi‐arm two‐stage trials with treatment selection and time‐to‐event endpoint

We consider estimation of treatment effects in two-stage adaptive multi-arm trials with a common control. The best treatment is selected at interim, and the primary endpoint is modeled via a Cox proportional hazards model. The maximum partial-likelihood estimator of the log hazard ratio of the selected treatment will overestimate the true treatment effect in this case. Several methods for reduc...

متن کامل

Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching

Statistical approaches for estimating treatment effectiveness commonly model the endpoint, or the propensity score, using parametric regressions such as generalised linear models. Misspecification of these models can lead to biased parameter estimates. We compare two approaches that combine the propensity score and the endpoint regression, and can make weaker modelling assumptions, by using mac...

متن کامل

Estimation of partial parameters for non stationary sinusoids

The following paper deals with the estimation of partial parameters for non stationary sinusoids. First the existing bias for the analysis of non stationary sinusoids in a standard estimator is discussed. Then a new approach to bias reduction is proposed that consists of frequency slope estimation and demodulation to reduce the bias of the standard parameter estimator. The new approach does not...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009