Riccati Equations in Delay Systems

نویسنده

  • Erik I. Verriest
چکیده

We give an overview of how the Riccati equation makes its appearance in the stability analysis of linear systems with delays. We avoid complexities as time-invariance, added perturbations, distributed delays etc, to get to the main issues. Most generalizations can be or have been carried out, but do not add substantially to our understanding. We also show the connection between quadratic stability and an optimization problem The notion of Riccati stability is introduced as the existence of a positive definite triple of matrices satisfying a certain Riccati equation. While having its origin in the problem of delay systems, the partial characterization of this Riccati stability is carried out as an independent endeavor. 1 Lyapunov Krasovskii Functionals in Delay Systems The past decade has seen a flurry of activity on systems with delays (See [6,8,9] and references therein). One important direction of this activity involved the stability analysis of delay systems using the Lyapunov-Krasovskii approach. In this connection the Riccati equation made its entrance into the study of delay systems. In this paper we present a stripped down version of the main results on stability and its tangency to the ubiquitous Riccati equation. With stripped down, we mean that we will not be concerned with the time varying, nonlinearly perturbed, or uncertain versions. These inclusions only seem to clutter up the main theory with additional complexities and technicalities, without requiring essentially new techniques or providing greater insight. We shall consider the linear autonomous continuous time retarded system ẋ(t) = Ax(t) + ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal Riccati stability and positive time-delay systems

We consider a class of algebraic Riccati equations arising in the study of positive linear time-delay systems. We show that this class admits diagonal positive definite solutions. This implies that exponentially stable positive linear timedelay systems possess Lyapunpov-Krasovskii functionals of a simple quadratic form. We also show that for this class of equations, the existence of positivedef...

متن کامل

Linear Uncertain Non-autonomous Time-delay Systems: Stability and Stabilizability via Riccati Equations

This paper addresses the problem of exponential stability for a class of uncertain linear non-autonomous time-delay systems. Here, the parameter uncertainties are time-varying and unknown but norm-bounded and the delays are time-varying. Based on combination of the Riccati equation approach and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust stabilit...

متن کامل

Delay-independent Stabilization of Linear Systems with Multiple Time-delays

The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matri...

متن کامل

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004