Frequency modulation of synchronized Ca2+ spikes in cultured hippocampal networks through G-protein-coupled receptors.

نویسندگان

  • Zhijun Liu
  • Lin Geng
  • Ruxin Li
  • Xiangping He
  • James Q Zheng
  • Zuoping Xie
چکیده

Synchronized spontaneous Ca2+ spikes in networked neurons represent periodic burst firing of action potentials, which are believed to play a major role in the development and plasticity of neuronal circuitry. How these network activities are shaped and modulated by extrinsic factors during development, however, remains to be studied. Here we report that synchronized Ca2+ spikes among cultured hippocampal neurons can be modulated by two small factors that act on G-protein-coupled receptors (GPCRs): the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) and the chemokine SDF-1 (stromal cell-derived factor-1). PACAP effectively increases the frequency of the synchronized Ca2+ spikes when applied acutely; the PACAP potentiation of Ca2+ spikes requires the activation of the PACAP-specific PAC1 GPCRs and is mediated by the activation of cAMP signaling pathway. SDF-1, on the other hand, significantly reduces the frequency of these Ca2+ spikes through the activation of its specific GPCR CXCR4; the inhibitory action of SDF-1 is mediated by the inhibition of cAMP pathway through the Gi component of GPCRs. Taken together, these results demonstrate that synchronized neuronal network activity can be effectively modulated by physiologically and developmentally relevant small factors that act on GPCRs to target the cAMP pathway. Such modulation of neuronal activity through GPCRs may represent a significant mechanism that underlies the neuronal plasticity during neural development and functioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulating hippocampal hyperexcitability through GABAB Receptors

Abstract Disturbances of GABAergic inhibition are a major cause of epileptic seizures. GABA exerts its actions via ionotropic GABAA receptors and metabotropic G protein-coupled GABAB receptors. Malfunction of GABAA inhibition has long been recognized in seizure genesis but the role of GABAB receptors in controlling seizure activity is still not well understood. Here, we examined the anticonvuls...

متن کامل

Role of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices

The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...

متن کامل

Role of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices

The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures.

Activation of cannabinoid receptors inhibits voltage-gated Ca2+ channels and activates K+ channels, reminiscent of other G-protein-coupled signaling pathways that produce presynaptic inhibition. We tested cannabinoid receptor agonists for effects on excitatory neurotransmission between cultured rat hippocampal neurons. Reducing the extracellular Mg2+ concentration to 0.1 mM elicited repetitive,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2003