Yeast Model Uncovers Dual Roles of Mitochondria in the Action of Artemisinin

نویسندگان

  • Wei Li
  • Weike Mo
  • Dan Shen
  • Libo Sun
  • Juan Wang
  • Shan Lu
  • Jane M Gitschier
  • Bing Zhou
چکیده

Artemisinins, derived from the wormwood herb Artemisia annua, are the most potent antimalarial drugs currently available. Despite extensive research, the exact mode of action of artemisinins has not been established. Here we use yeast, Saccharamyces cerevisiae, to probe the core working mechanism of this class of antimalarial agents. We demonstrate that artemisinin's inhibitory effect is mediated by disrupting the normal function of mitochondria through depolarizing their membrane potential. Moreover, in a genetic study, we identify the electron transport chain as an important player in artemisinin's action: Deletion of NDE1 or NDI1, which encode mitochondrial NADH dehydrogenases, confers resistance to artemisinin, whereas overexpression of NDE1 or NDI1 dramatically increases sensitivity to artemisinin. Mutations or environmental conditions that affect electron transport also alter host's sensitivity to artemisinin. Sensitivity is partially restored when the Plasmodium falciparum NDI1 ortholog is expressed in yeast ndi1 strain. Finally, we showed that artemisinin's inhibitory effect is mediated by reactive oxygen species. Our results demonstrate that artemisinin's effect is primarily mediated through disruption of membrane potential by its interaction with the electron transport chain, resulting in dysfunctional mitochondria. We propose a dual role of mitochondria played during the action of artemisinin: the electron transport chain stimulates artemisinin's effect, most likely by activating it, and the mitochondria are subsequently damaged by the locally generated free radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artemisinin Directly Targets Malarial Mitochondria through Its Specific Mitochondrial Activation

The biological mode of action of artemisinin, a potent antimalarial, has long been controversial. Previously we established a yeast model addressing its mechanism of action and found mitochondria the key in executing artemisinin's action. Here we present data showing that artemisinin directly acts on mitochondria and it inhibits malaria in a similar way as yeast. Specifically, artemisinin and i...

متن کامل

The molecular and cellular action properties of artemisinins: what has yeast told us?

Artemisinin (ART) or Qinghaosu is a natural compound possessing superior anti-malarial activity. Although intensive studies have been done in the medicinal chemistry field to understand the structure-effect relationship, the biological actions of artemisinin are poorly understood and controversial. Due to the current lack of a genetic amiable model to address this question, and an accidental fi...

متن کامل

A mitochondria-targeting artemisinin derivative with sharply increased antitumor but depressed anti-yeast and anti-malaria activities

The potent anti-malarial drug artemisinins are additionally anti-tumorigenic and inhibitory to yeast growth. The action mechanism of artemisinins, however, is not well understood. Heme and mitochondrial membrane are both suggested to be involved in the action of artemisinins. Because heme is also synthesized in the mitochondrion, mitochondria appear to be a critical organelle for artemisinins' ...

متن کامل

Two distinct and competitive pathways confer the cellcidal actions of artemisinins

The biological actions of artemisinin (ART), an antimalarial drug derived from Artemisia annua, remain poorly understood and controversial. Besides potent antimalarial activity, some of artemisinin derivatives (together with artemisinin, hereafter referred to as ARTs), in particular dihydroartemisinin (DHA), are also associated with anticancer and other antiparasitic activities. In this study, ...

متن کامل

Tissue distribution of artemisinin in broiler chickens following single or multiple oral administration

Background: Artemisinin is commonly used for the treatment of malaria, but recently has been considered as a potential substance to control poultry coccidiosis. OBJECTIVES: The aim of the present study was to determine the tissue distribution of artemisinin following single or multiple oral administration of different doses in broiler chickens. METHODS: A total number of 390 one day old Ross br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Genetics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005