Deletional Protein Engineering Based on Stable Fold

نویسندگان

  • Govindan Raghunathan
  • Nagasundarapandian Soundrarajan
  • Sriram Sokalingam
  • Hyungdon Yun
  • Sun-Gu Lee
چکیده

Diversification of protein sequence-structure space is a major concern in protein engineering. Deletion mutagenesis can generate a protein sequence-structure space different from substitution mutagenesis mediated space, but it has not been widely used in protein engineering compared to substitution mutagenesis, because it causes a relatively huge range of structural perturbations of target proteins which often inactivates the proteins. In this study, we demonstrate that, using green fluorescent protein (GFP) as a model system, the drawback of the deletional protein engineering can be overcome by employing the protein structure with high stability. The systematic dissection of N-terminal, C-terminal and internal sequences of GFPs with two different stabilities showed that GFP with high stability (s-GFP), was more tolerant to the elimination of amino acids compared to a GFP with normal stability (n-GFP). The deletion studies of s-GFP enabled us to achieve three interesting variants viz. s-DL4, s-N14, and s-C225, which could not been obtained from n-GFP. The deletion of 191-196 loop sequences led to the variant s-DL4 that was expressed predominantly as insoluble form but mostly active. The s-N14 and s-C225 are the variants without the amino acid residues involving secondary structures around N- and C-terminals of GFP fold respectively, exhibiting comparable biophysical properties of the n-GFP. Structural analysis of the variants through computational modeling study gave a few structural insights that can explain the spectral properties of the variants. Our study suggests that the protein sequence-structure space of deletion mutants can be more efficiently explored by employing the protein structure with higher stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and Characterization of a Novel Thermostable and Acid Stable α-Amylase from Bacillus Sp. Iranian S1

This study reports the purification and biochemical characterization of thermostable and acidic-pH-stable α-amylase from Bacillus sp. Iranian S1 isolated from the desert soil (Gandom-e-Beryan in Lut desert, Iran). Amylase production was found to be growth associated. Maximum enzyme production was in exponential phase with activity 2.93 U ml-1 at 50°C and pH 5. The enzyme was purified by isoprop...

متن کامل

Limitations of yeast surface display in engineering proteins of high thermostability.

Engineering proteins that can fold to unique structures remains a challenge. Protein stability has previously been engineered via the observed correlation between thermal stability and eukaryotic secretion level. To explore the limits of an expression-based approach, variants of the highly thermostable three-helix bundle protein alpha3D were studied using yeast surface display. A library of alp...

متن کامل

Small in-frame deletion in the epidermal growth factor receptor as a target for ZD6474.

ZD6474 is an inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2/KDR) tyrosine kinase, with additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. ZD6474 inhibits angiogenesis and growth of a wide range of tumor models in vivo. Gefitinib ("Iressa") is a selective EGFR tyrosine kinase inhibitor that blocks signal transduction pathways implicated in c...

متن کامل

Finding a new vaccine in the ricin protein fold.

Previous attempts to produce a vaccine for ricin toxin have been hampered by safety concerns arising from residual toxicity and the undesirable aggregation or precipitation caused by exposure of hydrophobic surfaces on the ricin A-chain (RTA) in the absence of its natural B-chain partner. We undertook a structure-based solution to this problem by reversing evolutionary selection on the 'ribosom...

متن کامل

Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution.

We recently used computational protein design to create an extremely stable, globular protein, Top7, with a sequence and fold not observed previously in nature. Since Top7 was created in the absence of genetic selection, it provides a rare opportunity to investigate aspects of the cellular protein production and surveillance machinery that are subject to natural selection. Here we show that a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012