From Linear Codes to Hyperplane Arrangements via Thomas Decomposition

نویسندگان

  • Wilhelm Plesken
  • Thomas Bachler
چکیده

We establish a connection between linear codes and hyperplane arrangements using the Thomas decomposition of polynomial systems and the resulting counting polynomial. This yields both a generalization and a refinement of the weight enumerator of a linear code. In particular, one can deal with infinitely many finite fields simultaneously by defining a weight enumerator for codes over infinite fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Bounded Complex of an Affine Oriented Matroid

We prove that the bounded complex of an affine oriented matroid is pure and collapsible. We also generalize Zaslavsky’s Central Decomposition Theorem for hyperplane arrangements to affine oriented matroids.

متن کامل

Affine and Toric Hyperplane Arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s fundamental results on the number of regions.

متن کامل

Affine and toric arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results on the number of regions. Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un ...

متن کامل

Hyperplane Arrangements and Linear Strands in Resolutions

The cohomology ring of the complement of a central complex hyperplane arrangement is the well-studied Orlik-Solomon algebra. The homotopy group of the complement is interesting, complicated, and few results are known about it. We study the ranks for the lower central series of such a homotopy group via the linear strand of the minimal free resolution of the field C over the Orlik-Solomon algebra.

متن کامل

A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

We show that the k-SUM problem can be solved by a linear decision tree of depth O(n2 log2 n), improving the recent bound O(n3 log3 n) of Cardinal et al. [7]. Our bound depends linearly on k, and allows us to conclude that the number of linear queries required to decide the n-dimensional Knapsack or SubsetSum problems is only O(n3 logn), improving the currently best known bounds by a factor of n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1202.3625  شماره 

صفحات  -

تاریخ انتشار 2012