Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.

نویسندگان

  • Nitun N Poddar
  • Jacques G Amar
چکیده

Motivated by recent drop-drying experiments of Au nanoparticle (NP) island self-assembly, we investigate the structure, diffusion, and binding of dodecanethiol-coated Au NPs adsorbed at the toluene-vapor interface using molecular dynamics (MD) simulations as well as analytical calculations. For a 6 nm core diameter NP our results indicate the existence of significant intermixing between the ligands and the solvent. As a result, the NP lies primarily below the interface with only a portion of the ligands sticking out, while the toluene-vapor interface is significantly higher in the region above the NP core than away from the NP. These results are consistent with a competition between the negative free energy of mixing of toluene and the dodecanethiol ligands, which tends to keep the NP below the interface, and the effects of surface tension which keeps the NP near the interface. Consistent with this result, we find that the coefficient for nanoparticle diffusion along the interface is close to the Stokes-Einstein prediction for three-dimensional bulk diffusion. An analysis of the ligand arrangement surrounding the NP also indicates that there is relatively little asymmetry in the ligand-coating. We then consider the effects of van der Waals interactions on the adsorption energy. In particular, we derive an analytical expression for the van der Waals interaction energy between a coated nanoparticle and the surrounding solvent along with a closed-form expression for the van der Waals corrections to the binding energy at the interface due to the long-range core-solvent interaction. Using these results along with the results of our MD simulations, we then estimate the van der Waals corrections to the adsorption energy for dodecanethiol-coated Au nanoparticles at the toluene-vapor interface as well as for decanethiol-coated nanoparticles at the water-vapor interface. In both cases, we find that the long-range core-solvent interaction may significantly reduce the binding energy. Based on these results, we conclude that in many cases, the core-solvent van der Waals interaction is likely to have a significant effect on the binding energy and interface position of Au NPs. Our results also indicate that the competition between the van der Waals interaction and the short-range attraction to the interface leads to the existence of well-defined activation barriers for nanoparticle adsorption from the solvent as well as for interfacial desorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...

متن کامل

A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods.

A nanoparticle growth model is developed to predict and guide the syntheses of monodisperse colloidal nanoparticles in the liquid phase. The model, without any a priori assumptions, is based on the Fick's law of diffusion, conservation of mass and the Gibbs-Thomson equation for crystal growth. In the limiting case, this model reduces to the same expression as the currently accepted model that r...

متن کامل

Probing the interface in vapor-deposited bimetallic Pd-Au and Pt-Au films by CO adsorption from the liquid phase.

Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces ...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells

To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 140 24  شماره 

صفحات  -

تاریخ انتشار 2014