Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration.
نویسندگان
چکیده
NGF, the principal neurotrophic factor for basal forebrain cholinergic neurons (BFCNs), has been correlated to Alzheimer's disease (AD) because of the selective vulnerability of BFCNs in AD. These correlative links do not substantiate a comprehensive cause-effect mechanism connecting NGF deficit to overall AD neurodegeneration. A demonstration that neutralizing NGF activity could have consequences beyond a direct interference with the cholinergic system came from studies in the AD11 mouse model, in which the expression of a highly specific anti-NGF antibody determines a neurodegeneration that encompasses several features of human AD. Because the transgenic antibody binds to mature NGF much more strongly than to proNGF and prevents binding of mature NGF to the tropomyosin-related kinase A (TrkA) receptor and to p75 neurotrophin receptor (p75NTR), we postulated that neurodegeneration in AD11 mice is provoked by an imbalance of proNGF/NGF signaling and, consequently, of TrkA/p75NTR signaling. To test this hypothesis, in this study we characterize the phenotype of two lines of transgenic mice, one in which TrkA signaling is inhibited by neutralizing anti-TrkA antibodies and a second one in which anti-NGF mice were crossed to p75NTR(exonIII(-/-)) mice to abrogate p75NTR signaling. TrkA neutralization determines a strong cholinergic deficit and the appearance of beta-amyloid peptide (Abeta) but no tau-related pathology. In contrast, abrogating p75NTR signaling determines a full rescue of the cholinergic and Abeta phenotype of anti-NGF mice, but tau hyperphosphorylation is exacerbated. Thus, we demonstrate that inhibiting TrkA signaling activates Abeta accumulation and that different streams of AD neurodegeneration are related in complex ways to TrkA versus p75NTR signaling.
منابع مشابه
Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus
Background: Many recent epidemiological studies have shown that epileptic patients are more likely suffer from depression, anxiety, and irritability. However, the cellular mechanisms of epilepsy-induced psychotic behaviors are not fully elucidated. Neurotrophin receptors have been suggested to be involved in epilepsy and also in psychiatric disorders. Up-regulation of p75NTR expression and acti...
متن کاملNeurotrophin Signaling and Alzheimer’s Disease Neurodegeneration − Focus on BDNF/TrkB Signaling
Neurotrophins are small proteins vital for neuronal growth, differentiation, survival, and plasticity [1]. Members of the mammalian neurotrophin family include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotro‐ phin-4/5 (NT-4/5). Their neurotrophic effects are mediated by the tropomyosin receptor kin‐ ase (Trk) receptors, membrane-bound rec...
متن کاملp75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents.
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) act through the tropomyosin-related receptor tyrosine kinases (Trk) and the pan-neurotrophin receptor (p75) to regulate complex developmental and functional properties of neurons. While NGF activates both receptor types in sympathetic neurons, differential signaling through TrkA and p75 can result in wi...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملMultiple Functions of the P75 Neurotrophin Receptor in the Nervous System
Article history: Received: 15 June 2011 Accepted: 25 Aug 2011 Available online: 29 Dec 2011 Background: The P75 neurotrophin receptor (p75) is a transmembrane protein that binds the nerve growth factor (NGF) and implements multiple functions in the nervous system. It is expressed widely during the development of the nervous system although its expression is dramatically decreased at adulthood. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 27 شماره
صفحات -
تاریخ انتشار 2010