New time-type and space-type non-standard quantum algebras and discrete symmetries

نویسنده

  • Francisco J. Herranz
چکیده

Starting from the classical r-matrix of the non-standard (or Jordanian) quantum deformation of the sl(2,R) algebra, new triangular quantum deformations for the real Lie algebras so(2, 2), so(3, 1) and iso(2, 1) are simultaneously constructed by using a graded contraction scheme; these are realized as deformations of conformal algebras of (1 + 1)-dimensional spacetimes. Timetype and space-type quantum algebras are considered according to the generator that remains primitive after deformation: either the time or the space translation, respectively. Furthermore by introducing differential-difference conformal realizations, these families of quantum algebras are shown to be the symmetry algebras of either a time or a space discretization of (1 + 1)dimensional (wave and Laplace) equations on uniform lattices; the relationship with the known Lie symmetry approach to these discrete equations is established by means of twist maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New quantum (anti)de Sitter algebras and discrete symmetries

Two new quantum anti-de Sitter so(4, 2) and de Sitter so(5, 1) algebras are presented. These deformations are called either ‘time-type’ or ‘space-type’ according to the dimensional properties of the deformation parameter. Their Hopf structure, universal R matrix and differential-difference realization are obtained in a unified setting by considering a contraction parameter related to the speed ...

متن کامل

Twist maps for non-standard quantum algebras and discrete Schrödinger symmetries

The minimal twist map introduced by Abdesselam et al [1] for the nonstandard (Jordanian) quantum sl(2,R) algebra is used to construct the twist maps for two different non-standard quantum deformations of the (1+1) Schrödinger algebra. Such deformations are, respectively, the symmetry algebras of a space and a time uniform lattice discretization of the (1 + 1) free Schrödinger equation. It is sh...

متن کامل

New Fundamental Symmetries of Integrable Systems and Partial Bethe Ansatz

We introduce a new concept of quasi-Yang-Baxter algebras. The quantum quasiYang-Baxrer algebras being simple but non-trivial deformations of ordinary algebras of monodromy matrices realize a new type of quantum dynamical symmetries and nd an unexpected and remarkable applications in quantum inverse scattering method (QISM). We show that applying to quasi-Yang-Baxter algebras the standard proced...

متن کامل

’t Hooft Anomaly Matching Conditions for Generalized Symmetries in 2D

The ’t Hooft anomaly matching conditions are a standard tool to study and test nonperturbative issues in quantum field theory. We give a new, simple proof of the anomaly matching conditions in 2D Poincarè invariant theories. We consider the case of invariance under a large class of generalized symmetries, which include abelian and non-abelian internal symmetries, space-time symmetries generated...

متن کامل

D ec 1 99 6 Quasi - continuous symmetries of non - Lie type

We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the non-commutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrödinger equation for a free particle is investigated in such a non-commutative plane and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000