Inertial MEMS System Applications
نویسندگان
چکیده
The performance of MEMS inertial technology has evolved from automotive quality to that approaching tactical-grade quality (1 deg/h, 1 mg). This evolution is a direct result of advances made in the key technology areas driven by gun-launched projectile requirements. The application of silicon MEMS inertial technology to competent munitions efforts began in the early 1990s. Initially, gun hardness was demonstrated at the sensor level, although the bias-and-scale factor of these gyros and accelerometers was mostly suitable for automotive or commercial use. Subsequently, development programs were initiated to develop gun-hard inertial systems with greatly improved sensor performance, and with a goal of low production cost. This paper discusses the evolution of low-cost MEMS inertial system technology development for guided projectile INS/GPS systems and high performance IMUs. The evolution in sensors and packaging to realize performance improvement and system size reduction are presented. Recent data from the culmination of a three-year effort to develop an 8 cu in IMU are summarized, and represent the highest performance to date for an all-silicon IMU. Further investments in Silicon MEMS systems will ultimately realize IMUs that are smaller (less than 2 in3 (33 cc), higher performing (1 deg/h and less than 1 mg), and lower in cost (less than $1200 per IMU and $1500 per INS/GPS) than is achievable in any competing technology.
منابع مشابه
Test Results of a Gps/inertial Navigation System Using a Low Cost Mems Imu
This paper describes the design, operation, and test results of a miniature, low cost integrated GPS/inertial navigation system that uses commercial off-the-shelf Micro-Electro-Mechanical System (MEMS) accelerometers and gyroscopes. The MEMS inertial measurement unit (IMU) is packaged in a small size and provides the raw IMU data through a serial interface to a processor board where the inertia...
متن کاملPerformance Test Results of an Integrated GPS/MEMS Inertial Navigation Package
This paper describes the design, operation and performance test results of a miniature, low cost integrated GPS/inertial navigation system (INS) designed for use in UAV or UGV guidance systems. The system integrates a miniaturized commercial GPS with a low grade Micro-Electro-Mechanical (MEMS) inertial measurement unit (IMU). The MEMS IMU is a small self-contained package (< 1 cu inch) and incl...
متن کاملUNIVERSITY OF CALGARY Accuracy Enhancement of Integrated MEMS-IMU/GPS Systems for Land Vehicular Navigation Applications
This research aims at enhancing the accuracy of land vehicular navigation systems by integrating GPS and Micro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). This comprises improving the MEMS-based inertial output signals as well as investigating the limitations of a conventional Kalman Filtering (KF) solution for MEMS-IMU/GPS integration. These limitations are due to ...
متن کاملError and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver
Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS), GPS signals are often unavailable or unr...
متن کاملModern Breakthrough Technologies Enable New Applications Based on IMU Systems
— This paper describes IMU (Inertial Measurement Unit) platforms and their main target applications with a special focus on the 10 degrees of freedom (10-DOF) inertial platform iNEMO™, its technical features and performances. The iNEMO™ module is equipped with a 3-axis MEMS accelerometer, a 3-axis MEMS gyroscope, a 3-axis MEMS magnetometer, a pressure sensor and a temperature sensor. Furthermor...
متن کاملError Analysis and Stochastic Modeling of MEMS based Inertial Sensors for Land Vehicle Navigation Applications
Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS), the situation when GPS signals are unavailable or unreliable due to signal blockages must be compensated to provide continuous navigation solutions. In order to overcome the unavailability or unreliability problem in satellite based navigation systems and also to be cost effec...
متن کامل