Equidistant Linear Network Codes with maximal Error-protection from Veronese Varieties

نویسنده

  • Johan P. Hansen
چکیده

Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possible altered vectorspace. Ralf Koetter and Frank R. Kschischang [?] introduced a metric on the set af vector-spaces and showed that a minimal distance decoder for this metric achieves correct decoding if the dimension of the intersection of the transmitted and received vector-space is sufficiently large. From the Veronese varieties we construct explicit families of vector-spaces of constant dimension where any pair of distinct vector-spaces are equidistant in the above metric. The parameters of the resulting linear network codes which have maximal errorprotection are determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osculating Spaces of Varieties and Linear Network Codes

We present a general theory to obtain good linear network codes utilizing the osculating nature of algebraic varieties. In particular, we obtain from the osculating spaces of Veronese varieties explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersect in the same dimension. Linear network coding transmits information in terms of a basis of a vecto...

متن کامل

Forms and Linear Network Codes

We present a general theory to obtain linear network codes utilizing forms and obtain explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersect in the same small dimension. The theory is inspired by the methods of the author utilizing the osculating spaces of Veronese varieties. Linear network coding transmits information in terms of a basis of a ...

متن کامل

Equidistant subspace codes

In this paper we study equidistant subspace codes, i.e. subspace codes with the property that each two distinct codewords have the same distance. We provide an almost complete classification of such codes under the assumption that the cardinality of the ground field is large enough. More precisely, we prove that for most values of the parameters, an equidistant code of maximum cardinality is ei...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Gröbner Bases for Schubert Codes

We consider the problem of determining Gröbner bases of binomial ideals associated with linear error correcting codes. Computation of Gröbner bases of linear codes have become a topic of interest to many researchers in coding theory because of its several applications in decoding and error corrections. In this paper, Gröbner bases of linear codes associated to Grassmann varieties and Schubert v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1207.2083  شماره 

صفحات  -

تاریخ انتشار 2012