Characterizations of the Solution Sets of Generalized Convex Minimization Problems

نویسندگان

  • Vsevolod I. Ivanov
  • A. L. Dontchev
چکیده

In this paper we obtain some simple characterizations of the solution sets of a pseudoconvex program and a variational inequality. Similar characterizations of the solution set of a quasiconvex quadratic program are derived. Applications of these characterizations are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems

This paper deals with the minimization of a class of nonsmooth pseudolinear functions over a closed and convex set subject to linear inequality constraints. We establish several Lagrange multiplier characterizations of the solution set of the minimization problem by using the properties of locally Lipschitz pseudolinear functions. We also consider a constrained nonsmooth vector pseudolinear opt...

متن کامل

Characterizations of Optimal Solution Sets of Convex Infinite Programs

Several characterizations of solution sets of a class of convex infinite programs are given using Lagrange multiplier conditions. The results are then applied to some classes of optimization problems: cone-constrained convex programs and fractional programs. A class of semi-convex problems with convex constraints are also examined. Optimality conditions are obtained and several characterization...

متن کامل

Pseudoconvex Multiobjective Continuous-time Problems and Vector Variational ‎Inequalities

In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009