Congruences concerning Bernoulli numbers and Bernoulli polynomials

نویسنده

  • Zhi-Hong Sun
چکیده

Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) is the least positive solution of the congruence px ≡ r (modm). We also establish similar congruences for generalized Bernoulli numbers {Bn; }. ? 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Multidimensional Volkenborn Integral and Higher Order Bernoulli Numbers

In particular, the values at x = 0 are called Bernoulli numbers of order k, that is, Bn (0) = Bn k) (see [1, 2, 4, 5, 9, 10, 14]). When k = 1, the polynomials or numbers are called ordinary. The polynomials Bn (x) and numbers Bn were first defined and studied by Norlund [9]. Also Carlitz [2] and others investigated their properties. Recently they have been studied by Adelberg [1], Howard [5], a...

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Congruences and Recurrences for Bernoulli Numbers of Higher Order

In particular, B^\0) = B^\ the Bernoulli number of order k, and BJp = Bn, the ordinary Bernoulli number. Note also that B^ = 0 for n > 0. The polynomials B^\z) and the numbers B^ were first defined and studied by Niels Norlund in the 1920s; later they were the subject of many papers by L. Carlitz and others. For the past twenty-five years not much has been done with them, although recently the ...

متن کامل

Congruences for Generalized q-Bernoulli Polynomials

In this paper, we give some further properties of p-adic q-L-function of two variables, which is recently constructed by Kim 2005 and Cenkci 2006 . One of the applications of these properties yields general classes of congruences for generalized q-Bernoulli polynomials, which are qextensions of the classes for generalized Bernoulli numbers and polynomials given by Fox 2000 , Gunaratne 1995 , an...

متن کامل

Congruences for Bernoulli , Euler , and Stirling Numbers Paul

The values at x=0 are called Bernoulli and Euler numbers of order w; when w=1, the polynomials or numbers are called ordinary. When x=0 or w=1, we often suppress that part of the notation; e.g., B (w) n denotes B n (0), En(x) denotes E (1) n (x), and Bn denotes B (1) n (0). These numbers have been extensively studied and many congruences for them are known. Among the most important results are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2000