Regulation of SESAME-mediated H3T11 phosphorylation by glycolytic enzymes and metabolites
نویسندگان
چکیده
Cancer cells prefer aerobic glycolysis, but little is known about the underlying mechanism. Recent studies showed that the rate-limiting glycolytic enzymes, pyruvate kinase M2 (PKM2) directly phosphorylates H3 at threonine 11 (H3T11) to regulate gene expression and cell proliferation, revealing its non-metabolic functions in connecting glycolysis and histone modifications. We have reported that the yeast homolog of PKM2, Pyk1 phosphorylates H3T11 to regulate gene expression and oxidative stress resistance. But how glycolysis regulates H3T11 phosphorylation remains unclear. Here, using a series of glycolytic enzyme mutants and commercial available metabolites, we investigated the role of glycolytic enzymes and metabolites on H3T11 phosphorylation. Mutation of glycolytic genes including phosphoglucose isomerase (PGI1), enolase (ENO2), triosephosphate isomerase (TPI1), or folate biosynthesis enzyme (FOL3) significantly reduced H3T11 phosphorylation. Further study demonstrated that glycolysis regulates H3T11 phosphorylation by fueling the substrate, phosphoenonylpyruvate and the coactivator, FBP to Pyk1. Thus, our results provide a comprehensive view of how glycolysis modulates H3T11 phosphorylation.
منابع مشابه
HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer
Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling. Here we report that HSulf-1,...
متن کاملRetinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells
Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabo...
متن کاملHeat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity.
To address possible effects of heat shock protein 70 (Hsp70) on energy metabolism, we established a cell line expressing different levels of Hsp70 and evaluated changes in glucose and lactate metabolites, as well as ATP levels accordingly. In addition, activities of enzymes involved in glycolysis [phosphofructokinase (PFK) and lactate dehydrogenase (LDH)], Krebs cycle [citric synthase (CS)], an...
متن کاملGlycolytic oscillations in isolated rabbit ventricular myocytes.
Previous studies have shown that glycolysis can oscillate periodically, driven by feedback loops in regulation of key glycolytic enzymes by free ADP and other metabolites. Here we show both theoretically and experimentally in cardiac myocytes that when the capacity of oxidative phosphorylation and the creatine kinase system to buffer the cellular ATP/ADP ratio is suppressed, glycolysis can caus...
متن کاملThe Effect of Different Levels of Sesame Wastes on Performance, Milk Composition and Blood Metabolites in Holstein Lactating Dairy Cows
The objective of this study was to determine the effect of different levels of sesame wastes (SW) on performance, milk composition and blood metabolites in lactating dairy cows. In this order, eight multiparous Holstein dairy cows were used in a replicated 4×4 Latin square design in four periods of 21 days. Treatments were control (no Sesame meal supplementat...
متن کامل