Stimulation of ribosomal frameshifting by antisense LNA

نویسندگان

  • Chien-Hung Yu
  • Mathieu H. M. Noteborn
  • René C. L. Olsthoorn
چکیده

Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the efficiency of RNA oligonucleotides annealing downstream of the slippery sequence to induce frameshifting in vitro. Maximal frameshifting was observed with oligonucleotides of 12-18 nt. Antisense oligonucleotides bearing locked nucleic acid (LNA) modifications also proved to be efficient frameshift-stimulators in contrast to DNA oligonucleotides. The number, sequence and location of LNA bases in an otherwise DNA oligonucleotide have to be carefully manipulated to obtain optimal levels of frameshifting. Our data favor a model in which RNA stability at the entrance of the ribosomal tunnel is the major determinant of stimulating slippage rather than a specific three-dimensional structure of the stimulating RNA element.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides.

Evidence is presented that morpholino, 2'-O-methyl, phosphorothioate, and RNA antisense oligonucleotides can direct site-specific -1 translational frameshifting when annealed to mRNA downstream from sequences where the P- and A-site tRNAs are both capable of repairing with -1 frame codons. The efficiency of ribosomes shifting into the new frame can be as high as 40%, determined by the sequence ...

متن کامل

Antisense-induced ribosomal frameshifting

Programmed ribosomal frameshifting provides a mechanism to decode information located in two overlapping reading frames by diverting a proportion of translating ribosomes into a second open reading frame (ORF). The result is the production of two proteins: the product of standard translation from ORF1 and an ORF1-ORF2 fusion protein. Such programmed frameshifting is commonly utilized as a gene ...

متن کامل

Spacer-length dependence of programmed −1 or −2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting

Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structu...

متن کامل

Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol region.

The pol gene of all retroviruses is expressed as a gag-pol fusion protein which is proteolytically processed to produce all viral enzymes. In the human immunodeficiency virus (HIV), the gag and pol genes overlap by 241 nucleotides with pol in the -1 phase with respect to gag. The gag-pol fusion is produced via a -1 ribosomal frameshifting event that brings the overlapping, out-of-phase gag and ...

متن کامل

A general strategy to inhibiting viral −1 frameshifting based on upstream attenuation duplex formation

Viral -1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on -1 PRF for optimal propagation. Efficient eukaryotic -1 PRF requires an optimally placed stimulator structure downstream of the frameshifting site and different strategies targeting vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010