A study of vibrational relaxation of B-state carbon monoxide in the heme pocket of photolyzed carboxymyoglobin.
نویسندگان
چکیده
The vibrational energy relaxation of dissociated carbon monoxide in the heme pocket of sperm whale myoglobin has been studied using equilibrium molecular dynamics simulation and normal mode analysis methods. Molecular dynamics trajectories of solvated myoglobin were run at 300 K for both the delta- and epsilon-tautomers of the distal histidine, His64. Vibrational population relaxation times were estimated using the Landau-Teller model. For carbon monoxide (CO) in the myoglobin epsilon-tautomer, for a frequency of omega0 = 2131 cm-1 corresponding to the B1 state, T1epsilon(B1) = 640 +/- 185 ps, and for a frequency of omega0 = 2119 cm-1 corresponding to the B2 state, T1epsilon(B2) = 590 +/- 175 ps. Although the CO relaxation rates in both the epsilon- and delta-tautomers are similar in magnitude, the simulations predict that the vibrational relaxation of the CO is faster in the delta-tautomer. For CO in the myoglobin delta-tautomer, it was found that the relaxation times were identical within error for the two CO substate frequencies, T1delta(B1) = 335 +/- 115 ps and T1delta(B2) = 330 +/- 145 ps. These simulation results are in reasonable agreement with experimental results of Anfinrud and coworkers (unpublished results). Normal mode calculations were used to identify the dominant coupling between the protein and CO molecules. The calculations suggest that the residues of the myoglobin pocket, acting as a first solvation shell to the CO molecule, contribute the primary "doorway" modes in the vibrational relaxation of the oscillator.
منابع مشابه
Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations.
The vibrational energy relaxation of carbon monoxide in the heme pocket of sperm whale myoglobin was studied by using molecular dynamics simulation and normal mode analysis methods. Molecular dynamics trajectories of solvated myoglobin were run at 300 K for both the delta- and epsilon-tautomers of the distal His-64. Vibrational population relaxation times of 335 +/- 115 ps for the delta-tautome...
متن کاملOrientation of carbon monoxide and structure-function relationship in carbonmonoxymyoglobin.
Fourier transform infrared spectroscopy of the CO stretch bands in carbonmonoxymyoglobin (MbCO) reveals three major bands implying that MbCO exists in three major substates, A0, A1, and A3. After photolysis at low temperatures the CO is in the heme pocket, and the resulting CO stretch bands represent the B substates. Photoselection experiments determine the orientation of CO in the A (bound) an...
متن کاملVibrational Energy Relaxation of “Tailored” Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme “Cooling”
In a previous molecular dynamics simulation study, the kinetic energy relaxation of photolyzed heme in solvated carbonmonoxymyoglobin was found to be a single exponential decay process with the relaxation time constant 5.9 ps [Sagnella, D. E.; Straub, J. E. J. Phys. Chem. B 2001, 105, 7057]. The strong electrostatic interaction of the isopropionate side chains and the solvating water molecules ...
متن کاملTime-dependent atomic coordinates for the dissociation of carbon monoxide from myoglobin.
Picosecond time-resolved crystallography was used to follow the dissociation of carbon monoxide from the heme pocket of a mutant sperm whale myoglobin and the resultant conformational changes. Electron-density maps have previously been created at various time points and used to describe amino-acid side-chain and carbon monoxide movements. In this work, difference refinement was employed to gene...
متن کاملFourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 77 1 شماره
صفحات -
تاریخ انتشار 1999