Extracellular calcium increases CXCR4 expression on bone marrow-derived cells and enhances pro-angiogenesis therapy
نویسندگان
چکیده
Cell surface receptors play major roles in the mobilization and homing of progenitor cells from the bone marrow to peripheral tissues. CXCR4 is an important receptor that regulates homing of leucocytes and endothelial progenitors in response to the chemokine stromal cell-derived factor-1 (SDF-1). Ionic calcium is also known to regulate chemotaxis of selective bone marrow cells (BMCs) through the calcium-sensing receptor, CaR. Here we show that calcium regulates CXCR4 expression and BMC responses to SDF-1. CaCl(2) treatment of BMC induced a time- and dose-dependent increase in both the transcription and cell surface expression of CXCR4. BMC subpopulations expressing VEGFR2(+), CD34(+) and cKit(+)/Sca-1(+) were especially sensitive to calcium. The effects were blocked by calcium influx inhibitors, anti-CaR antibody and the protein synthesis inhibitor cycloheximide, but not by the CXCR4 antagonist AMD3100. Calcium treatment also enhanced SDF-1-mediated CXCR4 internalization. These changes were reflected in significantly improved chemotaxis by SDF-1, which was abolished by AMD3100 and by antibody against CXCR4. Calcium pre-treatment improved homing of CD34(+) BMCs to ischemic muscle in vivo, and enhanced revascularization in ischemic mouse hindlimbs. Our results identify calcium as a positive regulator of CXCR4 expression that promotes stem cell mobilization, homing and therapy.
منابع مشابه
Chemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability
Objective(s):The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a...
متن کاملA Novel CXCR4 antagonist enhances angiogenesis via modifying the ischaemic tissue environment
Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo-vessel formation and secreting pro-angiogenic factors. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF-1 and CXCR4 is an effective strategy f...
متن کاملSimvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway
Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...
متن کاملComparative analysis of the Gene expression profile of Chemokine Receptors between Adipose-derived and Bone marrow-derived Mesenchymal Stem Cells
Introduction: Mesenchymal stem cells (MSCs) hold great promise in the field of regenerative medicine.Although originally isolated from bone marrow, MSCs have since been obtained from a variety of adult and neonatal tissues including the adipose tissue. Stemness and multipotential features of Mesenchymal Stem Cells (MSC) has been highlighted in many studies but there are many dark aspects in ex...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کامل