Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

نویسندگان

  • Emanuel Bojórquez-Quintal
  • Ana Velarde-Buendía
  • Ángela Ku-González
  • Mildred Carillo-Pech
  • Daniela Ortega-Camacho
  • Ileana Echevarría-Machado
  • Igor Pottosin
  • Manuel Martínez-Estévez
چکیده

Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Physiological Responses of a Tropical Crop (Capsicum chinense Jacq.) at High Temperature

Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants...

متن کامل

Molecular Cloning and Functional Analysis of a Na+-Insensitive K+ Transporter of Capsicum chinense Jacq

High-affinity K+ (HAK) transporters are encoded by a large family of genes and are ubiquitous in the plant kingdom. These HAK-type transporters participate in low- and high-affinity potassium (K+) uptake and are crucial for the maintenance of K+ homeostasis under hostile conditions. In this study, the full-length cDNA of CcHAK1 gene was isolated from roots of the habanero pepper (Capsicum chine...

متن کامل

بررسی تحمل به شوری ژنوتیپ‌های نیشکر (.Saccharum officinarum L) بر اساس توانایی در تنظیم و انتقال یونی در مرحله ابتدای رشد رویشی

  Sugarcane is one of the most important sugar crops in the world. Because of semi-arid climate and salinity of its cultivation area in our country, increasing salt tolerance of sugarcane is signifying. To achieve this goal determining salt tolerant cultivars and understanding salinity mechanisms in sugarcane are very important. This study was conducted to evaluate 8 commercial and promising su...

متن کامل

بررسی تحمل به شوری ژنوتیپ‌های نیشکر (.Saccharum officinarum L) بر اساس توانایی در تنظیم و انتقال یونی در مرحله ابتدای رشد رویشی

  Sugarcane is one of the most important sugar crops in the world. Because of semi-arid climate and salinity of its cultivation area in our country, increasing salt tolerance of sugarcane is signifying. To achieve this goal determining salt tolerant cultivars and understanding salinity mechanisms in sugarcane are very important. This study was conducted to evaluate 8 commercial and promising su...

متن کامل

Nitrate Promotes Capsaicin Accumulation in Capsicum chinense Immobilized Placentas

In chili pepper's pods, placental tissue is responsible for the synthesis of capsaicinoids (CAPs), the compounds behind their typical hot flavor or pungency, which are synthesized from phenylalanine and branched amino acids. Placental tissue sections from Habanero peppers (Capsicum chinense Jacq.) were immobilized in a calcium alginate matrix and cultured in vitro, either continuously for 28 da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014