The weaver mouse gain-of-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels.

نویسندگان

  • B Liss
  • A Neu
  • J Roeper
چکیده

The phenotype of substantia nigra (SN) neurons in homozygous weaver (wv/wv) mice was studied by combining patch-clamp and single-cell RT-multiplex PCR techniques in midbrain slices of 14-d-old mice. In contrast to GABAergic SN neurons, which were unaffected in homozygous weaver mice (wv/wv), dopaminergic SN neurons possessed a dramatically altered phenotype with a depolarized membrane potential and complete loss of spontaneous pacemaker activity. The gain-of-function phenotype was mediated by a large, nonselective membrane conductance exclusively present in (wv/wv) dopaminergic SN neurons. This constitutively activated conductance displayed a sensitivity to external QX-314 (IC(50) = 10.6 microM) very similar to that of heterologously expressed wvGirk2 channels and was not further activated by G-protein stimulation. Single-cell Girk1-4 expression profiling suggested that homomeric Girk2 channels were present in most dopaminergic SN neurons, whereas Girk2 was always coexpressed with other Girk family members in GABAergic SN neurons. Surprisingly, acute QX-314 inhibition of wvGirk2 channels did not induce wild-type-like pacemaker activity but instead caused membrane hyperpolarization. Additional application of a blocker of ATP-sensitive potassium channels (100 microM tolbutamide) induced wild-type-like pacemaker activity. We conclude that the gain-of-function weaver phenotype of dopaminergic substantia nigra neurons is mediated by coactivation of wvGirk2 and SUR1/Kir6. 2-mediated ATP-sensitive K(+) channels. We also show that in contrast to wild-type neurons, all (wv/wv) dopaminergic SN neurons expressed calbindin, a calcium-binding protein that marks dopaminergic SN neurons resistant to neurodegeneration. The identification of two ion channels that in concert determine the weaver phenotype of surviving calbindin-positive dopaminergic SN neurons will help to understand the molecular mechanisms of selective neurodegeneration of dopaminergic SN neurons in the weaver mouse and might be important in Parkinson's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-gated calcium channels mediate intracellular calcium increase in weaver dopaminergic neurons during stimulation of D2 and GABAB receptors.

The weaver (wv) mutation affects the pore-forming region of the inwardly rectifying potassium channel (GIRK) leading to degeneration of cerebellar granule and midbrain dopaminergic neurons. The mutated channel (wvGIRK) loses its potassium selectivity, allowing sodium (Na+) and possibly calcium ions (Ca2+) to enter the cell. Here we performed whole cell patch-clamp recordings combined with micro...

متن کامل

Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.

ATP-sensitive potassium (K-ATP) channels couple the metabolic state to cellular excitability in various tissues. Several isoforms of the K-ATP channel subunits, the sulfonylurea receptor (SUR) and inwardly rectifying K channel (Kir6.X), have been cloned, but the molecular composition and functional diversity of native neuronal K-ATP channels remain unresolved. We combined functional analysis of...

متن کامل

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

Npgrj_nn_1570 1..10

The selective degeneration of dopaminergic (DA) midbrain neurons in the substantia nigra (SN) is a hallmark of Parkinson disease. DA neurons in the neighboring ventral tegmental area (VTA) are significantly less affected. The mechanisms for this differential vulnerability of DA neurons are unknown. We identified selective activation of ATP-sensitive potassium (K-ATP) channels as a potential mec...

متن کامل

The effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 20  شماره 

صفحات  -

تاریخ انتشار 1999