Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems
نویسندگان
چکیده
We present a class of domain decomposition (DD) preconditioners for the solution of elliptic linear-quadratic optimal control problems. Our DD preconditioners are extensions of Neumann–Neumann DD preconditioners, which have been successfully applied to the solution of single PDEs. The DD preconditioners are based on a decomposition of the optimality conditions for the elliptic linear-quadratic optimal control problem into smaller subdomain optimality conditions with Dirichlet boundary conditions for the states and the adjoints on the subdomain interfaces. These subdomain optimality conditions are coupled through Neumann interface conditions for the states and the adjoints. This decomposition leads to a Schur complement system in which the unknowns are the state and adjoint variables on the subdomain interfaces. The Schur complement operator is the sum of subdomain Schur complement operators, the application of which is shown to correspond to the solution of subdomain elliptic linear-quadratic optimal control problems, which are essentially smaller copies of the original optimal control problem. We show that, under suitable conditions, the application of the inverse of the subdomain Schur complement operators requires the solution of a subdomain elliptic linear-quadratic optimal control problem with Neumann interface conditions for the state. The subdomain Schur complement operators are analyzed in the variational setting of the problem as well as the algebraic setting obtained after a finite element discretization of the problem. Definiteness properties of the algebraic form of the (subdomain) Schur complement operator(s) are studied. Numerical tests show that the dependence of these preconditioners on mesh size and subdomain size is comparable to its counterpart applied to elliptic equations only. These tests also show that the preconditioners are insensitive to the size of the control regularization parameter.
منابع مشابه
Balancing Neumann-Neumann Methods for Elliptic Optimal Control Problems
We present Neumann-Neumann domain decomposition preconditioners for the solution of elliptic linear quadratic optimal control problems. The preconditioner is applied to the optimality system. A Schur complement formulation is derived that reformulates the original optimality system as a system in the state and adjoint variables restricted to the subdomain boundaries. The application of the Schu...
متن کاملDistributed Solution of Optimal Control Problems Governed by Parabolic Equations
We present a spatial domain decomposition (DD) method for the solution of discretized parabolic linear–quadratic optimal control problems. Our DD preconditioners are extensions of Neumann-Neumann DD methods, which have been successfully applied to the solution of single elliptic partial differential equations and of linear–quadratic optimal control problems governed by elliptic equations. We us...
متن کاملDomain Decomposition Preconditioners for Linear–quadratic Elliptic Optimal Control Problems
We develop and analyze a class of overlapping domain decomposition (DD) preconditioners for linear-quadratic elliptic optimal control problems. Our preconditioners utilize the structure of the optimal control problems. Their execution requires the parallel solution of subdomain linear-quadratic elliptic optimal control problems, which are essentially smaller subdomain copies of the original pro...
متن کاملRobust Parameter-Free Multilevel Methods for Neumann Boundary Control Problems
We consider a linear-quadratic elliptic control problem (LQECP). For the problem we consider here, the control variable corresponds to the Neumann data on the boundary of a convex polygonal domain. The optimal control unknown is the one for which the harmonic extension approximates best a specified target in the interior of the domain. We propose multilevel preconditioners for the reduced Hessi...
متن کاملA Spatial Domain Decomposition Method for Parabolic Optimal Control Problems ?
We present a non-overlapping spatial domain decomposition method for the solution of linear–quadratic parabolic optimal control problems. The spatial domain is decomposed into non-overlapping subdomains. The original parabolic optimal control problem is decomposed into smaller problems posed on space-time cylinder subdomains with auxiliary state and adjoint variables imposed as Dirichlet bounda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006