Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion

نویسندگان

  • J. M. Soto-Crespo
  • V. V. Afanasjev
  • S. Wabnitz
چکیده

Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau equation ~CGLE! are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the parameter space in which stable pulselike solutions of the quintic CGLE exist are numerically determined. These regions contain subspaces where analytical solutions may be found. An investigation of the role of group-velocity dispersion changes in magnitude and sign on the spectral and temporal characteristics of the stable pulse solutions is also carried out. @S1063-651X~97!10504-9#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.

Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easil...

متن کامل

Spectra of Short Pulse Solutions of the Cubic–Quintic Complex Ginzburg–Landau Equation near Zero Dispersion

We describe a computational method to compute spectra and slowly decaying eigenfunctions of linearizations of the cubic–quintic complex Ginzburg– Landau equation about numerically determined stationary solutions. We compare the results of the method to a formula for an edge bifurcation obtained using the small dissipation perturbation theory of Kapitula and Sandstede. This comparison highlights...

متن کامل

Extreme amplitude pulse pairs in a laser model described by the Ginzburg-Landau equation

We have found new dissipative solitons of the complex cubic-quintic Ginzburg-Landau equation with extreme amplitudes and short duration. At certain range of the equation parameters, these extreme spikes appear in pairs of slightly unequal amplitude. The bifurcation diagram of pulse amplitude versus dispersion parameter is constructed. c © 2015 Optical Society of America OCIS codes: 060.5530, 14...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Chaotic Mode-locking of Chirped-pulse Oscillators

Chaotic mode-locking of chirped-pulse oscillator has been analyzed on the basis of generalized nonlinear cubic-quintic complex Ginzburg-Landau equation. It has been shown, that the chirped solitary pulse can be stabilized against the vacuum excitation, if the fourth-order dispersion is nonzero and positive. However, the pulse evolves chaotically, if the dispersion reaches some threshold value.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997