Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

نویسندگان

  • G H Sørland
  • J G Seland
  • J Krane
  • H W Anthonsen
چکیده

The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pulsed Field Gradient Spin-Echo Method for Diffusion Measurements in the Presence of Internal Gradients.

Over the past decade several pulsed field gradient stimulated-echo methods have been presented for diffusion measurements in heterogeneous media. These methods have reduced or eliminated the coupling between the applied magnetic field gradient and a constant internal magnetic field gradient caused by susceptibility changes throughout the sample. For many research purposes the z-storage delay be...

متن کامل

Measurement of Apparent Long-Range Diffusion of He using Pulsed Gradient Spin Echo T2 in the Rat Lung at Low Magnetic Field Strength

Introduction: Measurement of Apparent Diffusion Coefficients (ADC) of hyperpolarized He gas in the lungs, can provide information on the micro-anatomical changes associated with disease over length scales permitted by the diffusion time. Improved sensitivity of ADC to chronic obstructive pulmonary disease (COPD) has recently been demonstrated using diffusion times on the order of seconds. These...

متن کامل

اندازه گیری غیریکنواختی امواج رادیوئی در ام آر آی

Introduction: Non-uniformity is one of the most important parameters affecting MRI images which can lead to harmful effects in the diagnosis and analysis of qualitative and quantitative methods. The present study introduced a method for measuring RF non-homogeneity in MRI systems. Methods and Materials: To verify the uniformity of B0 and B1 fields, a cylindrical phantom with a diameter of 24 c...

متن کامل

Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion: Part 1. Basic Theory

Translational diffusion is the most fundamental form of transport in chemical and biochemical systems. Pulsed-field gradient nuclear magnetic resonance provides a convenient and noninvasive means for measuring translational motion. In this method the attenuation of the echo signal from a Hahn spin-echo pulse sequence containing a magnetic field gradient pulse in each t period is used to measure...

متن کامل

Hyperpolarized Gas Polarimetry and Imaging at Low Magnetic Field

MR imaging with polarized noble gases has shown promise in both, biomedical and material’s imaging applications. Its advantage over the conventional proton MRI lies in its ability to produce high signal-to-noise ratio (SNR), high-resolution images at low magnetic field strengths. In this work: 1. We implemented and studied in detail two methods for detecting hyperpolarization levels of 129Xe an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 142 2  شماره 

صفحات  -

تاریخ انتشار 2000