Beta1-integrins are critical for cerebellar granule cell precursor proliferation.

نویسندگان

  • Sandra Blaess
  • Diana Graus-Porta
  • Richard Belvindrah
  • Randor Radakovits
  • Sebastian Pons
  • Amanda Littlewood-Evans
  • Mathias Senften
  • Huailian Guo
  • Yuqing Li
  • Jeffrey H Miner
  • Louis F Reichardt
  • Ulrich Müller
چکیده

We have previously shown that mice with a CNS restricted knock-out of the integrin beta1 subunit gene (Itgb1-CNSko mice) have defects in the formation of lamina and folia in the cerebral and cerebellar cortices that are caused by disruption of the cortical marginal zones. Cortical structures in postnatal and adult Itgb1-CNSko animals are also reduced in size, but the mechanism that causes the size defect has remained unclear. We now demonstrate that proliferation of granule cell precursors (GCPs) is severely affected in the developing cerebellum of Itgb1-CNSko mice. In the absence of beta1 expression, GCPs lose contact with laminin in the meningeal basement membrane, cease proliferating, and differentiate prematurely. In vitro studies provide evidence that beta1 integrins act at least in part cell autonomously in GCPs to regulate their proliferation. Previous studies have shown that sonic hedgehog (Shh)-induced GCP proliferation is potentiated by the integrin ligand laminin. We show that Shh directly binds to laminin and that laminin-Shh induced cell proliferation is dependent on beta1 integrin expression in GCPs. Taken together, these data are consistent with a model in which beta1 integrin expression in GCPs is required to recruit a laminin-Shh complex to the surface of GCPs and to subsequently modulate the activity of signaling pathways that regulate proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development.

Integrin-linked kinase (ILK) is a serine/threonine protein kinase that plays an important role in integrin signaling and cell proliferation. We used Cre recombinase (Cre)-loxP technology to study CNS restricted knock-out of the ilk gene by either Nestin-driven or gfap-driven Cre-mediated recombination. Developmental changes in ilk-excised brain regions are similar to those observed in mice lack...

متن کامل

Neural precursor cell chain migration and division are regulated through different beta1 integrins.

Proliferation and tangential migration of neural precursor cells are essential determinants of CNS development. We have established cell culture models of both these processes using neural precursor cells grown as neurospheres. The pattern of migration that we observe in these cells is homotypic and occurs in the absence of a glial or neuronal scaffold, and is therefore equivalent to that previ...

متن کامل

TGF-β2 neutralization inhibits proliferation and activates apoptosis of cerebellar granule cell precurors in the developing cerebellum

Transforming growth factor beta 2 (TGF-beta2) plays a critical role in growth, differentiation and cell death, but its function in the developing cerebellum is still uncertain. In this study we analyzed the effects of TGF-beta2 on ex vivo developing cerebellar slice cultures. Proliferation of granule cell precursors peaked ex vivo in the same developmental window as in vivo (P8-P14). Addition o...

متن کامل

Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network.

The molecular mechanisms regulating organ growth and size remain unclear. Sonic hedgehog (SHH) signaling is a major player in the regulation of cerebellar development: SHH is secreted by Purkinje neurons and acts on the proliferation of granule cell precursors (GCPs) in the external germinal layer. These then become postmitotic and form the internal granular layer but do so in the presence of S...

متن کامل

Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex.

Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 13  شماره 

صفحات  -

تاریخ انتشار 2004