Asymptotic Finite-Time Ruin Probabilities for a Class of Path-Dependent Heavy-Tailed Claim Amounts Using Poisson Spacings

نویسندگان

  • Romain Biard
  • Claude Lefèvre
  • Stéphane Loisel
  • Haikady Nagaraja
  • Haikady N. Nagaraja
چکیده

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Asymptotic Finite-Time Ruin Probabilities for a Class of Path-Dependent Heavy-Tailed Claim Amounts Using Poisson Spacings Romain Biard, Claude Lefèvre, Stéphane Loisel, Haikady Nagaraja

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of correlation crises in risk theory: asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed1

In the renewal risk model, several strong hypotheses may be found too restrictive to model accurately the complex evolution of the reserves of an insurance company. In the case where claim sizes are heavy-tailed, we relax independence and stationarity assumptions and extend some asymptotic results on finite-time ruin probabilities, to take into account possible correlation crises like the one r...

متن کامل

Ruin Probabilities and Aggregrate Claims Distributions for Shot Noise Cox Processes

We consider a risk process Rt where the claim arrival process is a superposition of a homogeneous Poisson process and a Cox process with a Poisson shot noise intensity process, capturing the effect of sudden increases of the claim intensity due to external events. The distribution of the aggregate claim size is investigated under these assumptions. For both light-tailed and heavy-tailed claim s...

متن کامل

Asymptotic multivariate finite-time ruin probabilities with heavy-tailed claim amounts: Impact of dependence and optimal reserve allocation

In ruin theory, the univariate model may be found too restrictive to describe accurately the complex evolution of the reserves of an insurance company. In the case where the company is composed of multiple lines of business, we compute asymptotics of finite-time ruin probabilities. Capital transfers between lines are partially allowed. When claim amounts are regularly varying distributed, sever...

متن کامل

A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equ...

متن کامل

Ruin probabilities for a regenerative Poisson gap generated risk process

A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is defined for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F . Asymptotic expressions for the infinite horizon ruin probabilities are given for both lightand the he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017