Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics

نویسندگان

  • Eric Barth
  • Tamar Schlick
چکیده

Force splitting or multiple timestep ~MTS! methods are effective techniques that accelerate biomolecular dynamics simulations by updating the fast and slow forces at different frequencies. Since simple extrapolation formulas for incorporating the slow forces into the discretization produced notable energy drifts, symplectic MTS variants based on periodic impulses became more popular. However, the efficiency gain possible with these impulse approaches is limited by a timestep barrier due to resonance—a numerical artifact occurring when the timestep is related to the period of the fastest motion present in the dynamics. This limitation is lifted substantially for MTS methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the LN method in the companion paper for protein dynamics. To explain our observations on those complex nonlinear systems, we examine here the stability of extrapolation and impulses to force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the energy drift of the former and the resonance-related artifacts of the latter technique. We show that two-class impulse methods are generally stable except at integer multiples of half the period of the fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods are generally unstable for the Newtonian model problem, but the instability is bounded for increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in the LN method described in paper I. © 1998 American Institute of Physics. @S0021-9606~98!50320-0#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Masking Resonance Artifacts in Force-SplittingMethods for Biomolecular Simulations byExtrapolative Langevin Dynamics

Numerical resonance artifacts have become recognized recently as a limiting factor to increasing the timestep in multiple-timestep (MTS) biomolecular dynamics simulations. At certain timesteps correlated to internal motions (e.g., 5 fs, around half the period of the fastest bond stretch, Tmin), visible inaccuracies or instabilities can occur. Impulse-MTS schemes are vulnerable to these resonanc...

متن کامل

Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN

We present an efficient new method termed LN for propagating biomolecular dynamics according to the Langevin equation that arose fortuitously upon analysis of the range of harmonic validity of our normal-mode scheme LIN. LN combines force linearization with force splitting techniques and disposes of LIN’s computationally intensive minimization ~anharmonic correction! component. Unlike the compe...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Special stability advantages of position-Verlet over velocity-Verlet in multiple-time step integration

We present an analysis for a simple two-component harmonic oscillator that compares the use of position-Verlet to velocity-Verlet for multiple-time step integration. The numerical stability analysis based on the impulse-Verlet splitting shows that position-Verlet has enhanced stability, in terms of the largest allowable time step, for cases where an ample separation of time scales exists. Numer...

متن کامل

Modeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression

In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998