Proof of the Wilf-Zeilberger Conjecture

نویسندگان

  • Shaoshi Chen
  • Christoph Koutschan
چکیده

In 1992, Wilf and Zeilberger conjectured that a hypergeometric term in several discrete and continuous variables is holonomic if and only if it is proper. Strictly speaking the conjecture does not hold, but it is true when reformulated properly: Payne proved a piecewise interpretation in 1997, and independently, Abramov and Petkovšek in 2002 proved a conjugate interpretation. Both results address the pure discrete case of the conjecture. In this paper we extend their work to hypergeometric terms in several discrete and continuous variables and prove the conjugate interpretation of the Wilf–Zeilberger conjecture in this mixed setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of a Conjecture of Wilf and Zeilberger

Wilf and Zeilberger conjectured in 1992 that a hypergeometric term is proper-hypergeometric if and only if it is holonomic. We prove a version of this conjecture in the case of two discrete variables.

متن کامل

Proof of the Wilf–Zeilberger Conjecture for Mixed Hypergeometric Terms

In 1992, Wilf and Zeilberger conjectured that a hypergeometric term in several discrete and continuous variables is holonomic if and only if it is proper. Strictly speaking the conjecture does not hold, but it is true when reformulated properly: Payne proved a piecewise interpretation in 1997, and independently, Abramov and Petkovšek in 2002 proved a conjugate interpretation. Both results addre...

متن کامل

Proof of a Conjecture of Wilf and

Wilf and Zeilberger conjectured in 1992 that a hypergeometric term is proper-hypergeometric if and only if it is holonomic. We prove a version of this conjecture in the case of two discrete variables.

متن کامل

Proof of the alternating sign matrix conjecture

Gert Almkvist, Noga Alon, George Andrews, Anonymous, Dror Bar-Natan, Francois Bergeron, Nantel Bergeron, Gaurav Bhatnagar, Anders Björner, Jonathan Borwein, Mireille Bousquest-Mélou, Francesco Brenti, E. Rodney Canfield, William Chen, Chu Wenchang, Shaun Cooper, Kequan Ding, Charles Dunkl, Richard Ehrenborg, Leon Ehrenpreis, Shalosh B. Ekhad, Kimmo Eriksson, Dominique Foata, Omar Foda, Aviezri ...

متن کامل

How the Alternating Sign Matrix Conjecture Was Solved, Volume 46, Number 6

Introduction Perusing the four volumes of Muir’s The Theory of Determinants in the Historical Order of Development, one might be tempted to conclude that the theory of determinants was well and truly beaten to death in the nineteenth century. In fact, the field is thriving, and it has continued to yield challenging problems of deceptive elegance and simplicity. The Alternating Sign Matrix Conje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.04840  شماره 

صفحات  -

تاریخ انتشار 2015