An Infinite Branching Hierarchy of Time-Periodic Solutions of the Benjamin-Ono Equation
نویسنده
چکیده
We present a new representation of solutions of the Benjamin-Ono equation that are periodic in space and time. Up to an additive constant and a Galilean transformation, each of these solutions is a previously known, multi-periodic solution; however, the new representation unifies the subset of such solutions with a fixed spatial period and a continuously varying temporal period into a single network of smooth manifolds connected together by an infinite hierarchy of bifurcations. Our representation explicitly describes the evolution of the Fourier modes of the solution as well as the particle trajectories in a meromorphic representation of these solutions; therefore, we have also solved the problem of finding periodic solutions of the ordinary differential equation governing these particles, including a description of a bifurcation mechanism for adding or removing particles without destroying periodicity. We illustrate the types of bifurcation that occur with several examples, including degenerate bifurcations not predicted by linearization about traveling waves.
منابع مشابه
Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملOn the Controllability and Stabilization of the Linearized Benjamin-ono Equation
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation suc...
متن کاملTime-Periodic Solutions of the Benjamin-Ono Equation
We present a spectrally accurate numerical method for finding non-trivial timeperiodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the in...
متن کاملIntegrable hydrodynamics of Calogero-Sutherland model: Bidirectional Benjamin-Ono equation
We develop a hydrodynamic description of the classical Calogero-Sutherland liquid: a Calogero-Sutherland model with an infinite number of particles and a non-vanishing density of particles. The hydrodynamic equations, being written for the density and velocity fields of the liquid, are shown to be a bidirectional analogue of BenjaminOno equation. The latter is known to describe internal waves o...
متن کامل