Increased Ca buffering underpins remodelling of Ca2+ handling in old sheep atrial myocytes
نویسندگان
چکیده
KEY POINTS Ageing is associated with an increased risk of cardiovascular disease and arrhythmias, with the most common arrhythmia being found in the atria of the heart. Little is known about how the normal atria of the heart remodel with age and thus why dysfunction might occur. We report alterations to the atrial systolic Ca2+ transient that have implications for the function of the atrial in the elderly. We describe a novel mechanism by which increased Ca buffering can account for changes to systolic Ca2+ in the old atria. The present study helps us to understand how the processes regulating atrial contraction are remodelled during ageing and provides a basis for future work aiming to understand why dysfunction develops. ABSTRACT Many cardiovascular diseases, including those affecting the atria, are associated with advancing age. Arrhythmias, including those in the atria, can arise as a result of electrical remodelling or alterations in Ca2+ homeostasis. In the atria, age-associated changes in the action potential have been documented. However, little is known about remodelling of intracellular Ca2+ homeostasis in the healthy aged atria. Using single atrial myocytes from young and old Welsh Mountain sheep, we show the free Ca2+ transient amplitude and rate of decay of systolic Ca2+ decrease with age, whereas sarcoplasmic reticulum (SR) Ca content increases. An increase in intracellular Ca buffering explains both the decrease in Ca2+ transient amplitude and decay kinetics in the absence of any change in sarcoendoplasmic reticulum calcium transport ATPase function. Ageing maintained the integrated Ca2+ influx via ICa-L but decreased peak ICa-L . Decreased peak ICa-L was found to be responsible for the age-associated increase in SR Ca content but not the decrease in Ca2+ transient amplitude. Instead, decreased peak ICa-L offsets increased SR load such that Ca2+ release from the SR was maintained during ageing. The results of the present study highlight a novel mechanism by which increased Ca buffering decreases systolic Ca2+ in old atria. Furthermore, for the first time, we have shown that SR Ca content is increased in old atrial myocytes.
منابع مشابه
Early subcellular Ca2+ remodelling and increased propensity for Ca2+ alternans in left atrial myocytes from hypertensive rats.
AIMS Hypertension is a major risk factor for atrial fibrillation. We hypothesized that arterial hypertension would alter atrial myocyte calcium (Ca2+) handling and that these alterations would serve to trigger atrial tachyarrhythmias. METHODS AND RESULTS Left atria or left atrial (LA) myocytes were isolated from spontaneously hypertensive rats (SHR) or normotensive Wistar-Kyoto (WKY) controls...
متن کاملAerobic Interval Training Partly Reverse Contractile Dysfunction and Impaired Ca2+ Handling in Atrial Myocytes from Rats with Post Infarction Heart Failure
BACKGROUND There is limited knowledge about atrial myocyte Ca(2+) handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca(2+) handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. METHODS AND RESULTS Post-infarction HF was induced in Sprague Dawley...
متن کاملAtrial Myocyte Function and Ca2+ Handling Is Associated with Inborn Aerobic Capacity
BACKGROUND Although high aerobic capacity is associated with effective cardiac function, the effect of aerobic capacity on atrial function, especially in terms of cellular mechanisms, is not known. We aimed to investigate whether rats with low inborn maximal oxygen uptake (VO2 max) had impaired atrial myocyte contractile function when compared to rats with high inborn VO2 max. METHODS AND RES...
متن کاملSPOTLIGHT REVIEW Alterations of atrial Ca handling as cause and consequence of atrial fibrillation
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. As the most important risk factor for embolic stroke, AF is associated with a high morbidity and mortality. Despite decades of research, successful (pharmacological and interventional) ‘ablation’ of the arrhythmia remains challenging. AF is characterized by a diverse aetiology, including heart failure, hypertension, and valvul...
متن کاملPharmacological inhibition of na/ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block.
Block of Na/Ca exchange (NCX) has potential therapeutic applications, in particular, if a mode-selective block could be achieved, but also carries serious risks for disturbing the normal Ca2+ balance maintained by NCX. We have examined the effects of partial inhibition of NCX by SEA-0400 (1 or 0.3 micromol/L) in left ventricular myocytes from healthy pigs or mice and from mice with heart failur...
متن کامل