A preliminary coupled MT-GA model for the prediction of highway runoff quality.
نویسندگان
چکیده
Pollutants accumulated on road pavement during dry periods are washed off the surface with runoff water during rainfall events, presenting a potentially hazardous non-point source of pollution. Estimation of pollutant loads in these runoff waters is required for developing mitigation and management strategies, yet the numerous factors involved and their complex interconnected influences make straightforward assessment impossible. Data-driven models (DDMs) have lately been used in water and environmental research and have shown very good prediction ability. The proposed methodology of a coupled MT-GA (model tree-genetic algorithm) model provides an effective, accurate and easily calibrated predictive model for EMC (event mean concentration) of highway runoff pollutants. The models were trained and verified using a comprehensive data set of runoff events monitored in various highways in California, USA. EMCs of Cr, Pb, Zn, TOC and TSS were modeled, using different combinations of explanatory variables. The models' prediction ability in terms of correlation between predicted and actual values of both training and verification data was mostly higher than previously reported values. Sensitivity analysis was performed to examine the relative significance of each explanatory variable and the models' response to changes in input values.
منابع مشابه
Modeling highway runoff pollutant levels using a data driven model.
Pollutants accumulated on road pavement during dry periods are washed off the surface with runoff water during rainfall events, presenting a potentially hazardous non-point source of pollution. Estimation of pollutant loads in these runoff waters is required for developing mitigation and management strategies, yet the numerous factors involved and their complex interconnected influences make st...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملApplication of the answers model for prediction of runoff and sediment from a small agricultural watershed of iran
متن کامل
QSRR models of veterinary drugs in milk in ultra-performance liquid chromatography coupled to time of flight mass spectrometry
The veterinary drugs residues are also important pollutants found in milk, since veterinary drugs are commonly used in cattle management. Considering the role of milk in human nutrition and its wide consumption throughout the world, it is very important to ensure the milk quality. A quantitative structure–retention relationship (QSRR) was developed using the partial least square (PLS), Kernel P...
متن کاملRTDGPS Implementation by Online Prediction of GPS Position Components Error Using GA-ANN Model
If both Reference Station (RS) and navigational device in Differential Global Positioning System (DGPS) receive signals from the same satellite, RS Position Components Error (RPCE) can be used to compensate for navigational device error. This research used hybrid method for RPCE prediction which was collected by a low-cost GPS receiver. It is a combination of Genetic Algorithm (GA) computing an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 407 15 شماره
صفحات -
تاریخ انتشار 2009