Juxtaposition between activation and basic domains of human immunodeficiency virus type 1 Tat is required for optimal interactions between Tat and TAR.
نویسندگان
چکیده
trans activation of the human immunodeficiency virus type 1 long terminal repeat requires that the viral trans activator Tat interact with the trans-acting responsive region (TAR) RNA. Although the N-terminal 47 amino acids represent an independent activation domain that functions via heterologous nucleic acid-binding proteins, sequences of Tat that are required for interactions between Tat and TAR in cells have not been defined. Although in vitro binding studies suggested that the nine basic amino acids from positions 48 to 57 in Tat bind efficiently to the 5' bulge in the TAR RNA stem-loop, by creating several mutants of Tat and new hybrid proteins between Tat and the coat protein of bacteriophage R17, we determined that this arginine-rich domain is not sufficient for interactions between Tat and TAR in vivo. Rather, the activation domain is also required and must be juxtaposed to the basic domain. Thus, in vitro TAR RNA binding does not translate to function in vivo, which suggests that other proteins are important for specific and productive interactions between Tat and TAR.
منابع مشابه
Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II.
The Tat-responsive region (TAR) element is a critical RNA regulatory element in the human immunodeficiency virus (HIV) long terminal repeat, which is required for activation of gene expression by the transactivator protein Tat. Recently, we demonstrated by gel-retardation analysis that RNA polymerase II binds to TAR RNA and that Tat prevents this binding even when Tat does not bind to TAR RNA. ...
متن کاملReplication of human immunodeficiency viruses engineered with heterologous Tat-transactivation response element interactions.
Human immunodeficiency viruses (HIVs) and the related bovine lentiviruses bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV) utilize the viral Tat protein to activate viral transcription. The arginine-rich RNA-binding domains of the Tat proteins bind to their cognate transactivation response element (TAR) RNA hairpins located at the 5' ends of the viral mRNAs, resulting in enh...
متن کاملRegulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins.
The major group of human immunodeficiency virus type 1 (HIV-1) strains that comprise the current global pandemic have diversified during their worldwide spread into at least 10 distinct subtypes, or clades. Subtype C predominates in sub-Saharan Africa and is responsible for the majority of worldwide HIV-1 infections, subtype B predominates in North America and Europe, and subtype E is prevalent...
متن کاملInhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologous trans activators.
We examined the mechanism of Tat-mediated trans activation through competition experiments employing Tat proteins of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV). EIAV Tat, as well as chimeric EIAV/HIV-1 Tat proteins, inhibited HIV-1 Tat-mediated trans activation in a cell-type-dependent fashion. Furthermore, these proteins inhibited trans activation by ...
متن کاملFunctional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 67 6 شماره
صفحات -
تاریخ انتشار 1993