Local Linear Quantile Estimation for Nonstationary Time Series

نویسندگان

  • Wei Biao Wu
  • W. B. WU
چکیده

We consider estimation of quantile curves for a general class of nonstationary processes. Consistency and central limit results are obtained for local linear quantile estimates under a mild short-range dependence condition. Our results are applied to environmental data sets. In particular, our results can be used to address the problem of whether climate variability has changed, an important problem raised by IPCC (Intergovernmental Panel on Climate Change) in 2001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Quantile Estimations For Dynamic Smooth Coefficient Models

In this paper, quantile regression methods are suggested for a class of smooth coefficient time series models. We employ a local linear fitting scheme to estimate the smooth coefficients in the quantile framework. The programming involved in the local linear quantile estimation is relatively simple and it can be modified with few efforts from the existing programs for the linear quantile model....

متن کامل

Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes.

In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity ...

متن کامل

Nonparametric quantile regression with heavy-tailed and strongly dependent errors

We consider nonparametric estimation of the conditional qth quantile for stationary time series. We deal with stationary time series with strong time dependence and heavy tails under the setting of random design. We estimate the conditional qth quantile by local linear regression and investigate the asymptotic properties. It is shown that the asymptotic properties are affected by both the time ...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009