Characterization of the SigD Regulon of C. difficile and Its Positive Control of Toxin Production through the Regulation of tcdR
نویسندگان
چکیده
Clostridium difficile intestinal disease is mediated largely by the actions of toxins A (TcdA) and B (TcdB), whose production occurs after the initial steps of colonization involving different surface or flagellar proteins. In B. subtilis, the sigma factor SigD controls flagellar synthesis, motility, and vegetative autolysins. A homolog of SigD encoding gene is present in the C.difficile 630 genome. We constructed a sigD mutant in C. difficile 630 ∆erm to analyze the regulon of SigD using a global transcriptomic approach. A total of 103 genes were differentially expressed between the wild-type and the sigD mutant, including genes involved in motility, metabolism and regulation. In addition, the sigD mutant displayed decreased expression of genes involved in flagellar biosynthesis, and also of genes encoding TcdA and TcdB as well as TcdR, the positive regulator of the toxins. Genomic analysis and RACE-PCR experiments allowed us to characterize promoter sequences of direct target genes of SigD including tcdR and to identify the SigD consensus. We then established that SigD positively regulates toxin expression via direct control of tcdR transcription. Interestingly, the overexpression of FlgM, a putative anti-SigD factor, inhibited the positive regulation of motility and toxin synthesis by SigD. Thus, SigD appears to be the first positive regulator of the toxin synthesis in C. difficile.
منابع مشابه
Bacteriophage-mediated toxin gene regulation in Clostridium difficile.
Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demo...
متن کاملEffect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291
Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile-associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. Th...
متن کاملGlobal transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile
The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50%...
متن کاملEFFECT OF AMYGDALUS COMMUNIS ON GROWTH AND TOXIN PRODUCTION OF CLOSTRIDIUM DIFFICILE
It is known that the major etiologic agent of pseudomembranous colitis in man is Clostridium difficile. With respect to traditional use of almond paste in the treatment of infantile diarrhea, we studied the effects of the aqueous extract of Amygdalus communis (AEAC) on the growth and toxin production of Clostridium difficile in culture medium and the rabbit ligated ileal loop. Three groups...
متن کاملCharacterization of Clostridium botulinum spores and its toxin in honey
Botulism is a serious paralytic disease caused by Clostridium botulinum toxin in foods. There are seven recognized serotypes of botulinum neurotoxins among which the principal prevalent types in humans include A, B and E. Infant botulism results from intestinal colonization and toxin production by C. botulinum spores in babies less than 1 year old. Honey is the most important food discriminated...
متن کامل